
18. Juli 2017 Moving wLib2 from VO to X# Page 1

Moving wLib2 from VO to X#

A sample for a migration from VO to X#

Architecture of my VO programs
First, let me explain the structure of my VO applications:

 The base library is the wLib2, that is about 20 years old and is enhanced when needed, at

least once a month. It contains the base classes for servers, controls and windows and a lot

of other functions and classes. This library contains only handwritten code and is shared

between different projects through external modules.

 Then there is the BasicMapi lib, that contains basic mail functionality and DynMenu, the

basic classes for dynamic menus (I don't use the menu editor because most menus are to

build depending on the current user

 The next library is wLibDlg, that uses the first three libraries and contains the most used

dialogs, like LookupDialog, ChoiceDialog and about 20 others.

 Next in the list is wStdBrowser, that uses bBrowser 4, defines my bBrowser base class and

the standard databrowser window from which nearly all databrowser windows are inherited,

and the relative filter functionality.

 And then, as last in the list, I have wErrorsys, my base error handler.

There are much more libraries, but they are loaded either dynamically like the Zip (using

Compression Plus) or the report classes (using VPE), or used only by a few applications like the

Vo2Ado or the MySql lib.

As you can immagine, first candidate in the migration process was the wLib2 library.

Since my libraries and my applications are living, I need the possibility to repeat the migration often,

until all of my VO applications (about 50) are migrated to X#.

And the basic rule is to not change anything in the X# version of the library that is not changed also in

the VO version.

And as last note: I have licenses to Vulcan 4 (as I'm currently subscribed also to VPS) and to the

bBrowser4.NET.

18. Juli 2017 Moving wLib2 from VO to X# Page 2

Preparation and first migration of wLib2
Before starting the migration of my most important library, I have imported the source code of the

Vulcan version of the VO class libraries into my XIDE projects.

Then I have changed the names of the libraries from VulcanVO* to XSVO*, changed the compiler

from Vulcan to X#/Vulcan dialect and compiled them.

Another note: on my C drive, I have a folder called DevNET\Libs, where I put all compiled versions of

my libraries:

Upon my request, Chris has added a special function in XIDE to copy the binaries of a project to a

directory, and I use this funtionality to maintain my c:\devnet\libs directory content up to date:

18. Juli 2017 Moving wLib2 from VO to X# Page 3

When using then the libraries in an application references, I select them from the relative

c:\devNET\libs folder.

Back to the migration process itself: I created a new XIDE project, called VO to X# migration, using

the folder C:\XSharp\XIDE\Projects\VO_XS_Migration\.

Then I fired up the VO-xPorter, selected the most recent version of my wLib2 AEF and used the

following settings:

Two settings are very important:

 the output folder points to the Applications directory of the new project

 and the "do not overwrite project files" is checked

These settings are important so I can repeat the migration process how often as I like without the

need to reconfigure the projects settings after each run, as only the prg files are written.

18. Juli 2017 Moving wLib2 from VO to X# Page 4

After xPorting the AEF, I added the application through the Project - Add application context menu:

After this operation, my library was ready to be compiled the first time – and I was really

surprised about the errors.

18. Juli 2017 Moving wLib2 from VO to X# Page 5

wLib2 – Compile errors and the relative fixes
This will be the longest and IMHO most important part of this document, and every error will have ist

own page to be easier to read and and easier to find.

The first compile gave only very few errors:

And both of them were caused by the VO-xPorter (Chris Pyrgas is informed about these and they will

be fixed in a later version):

changed to

and

changed to

After these corrections, the next compile gave finally the expected number of errors:

18. Juli 2017 Moving wLib2 from VO to X# Page 6

XS0028: Cannot implicitily convert type …..

This error was occurring in this part of code:

where „cValidBlock“ was defined „as string“

I have made this change (again on the VO and X# side the same):

Defining „oValidBlock as CodeBlock“

It seems that the Vulcan.NET runtime defines a different return type for the function „MCompile“,

and the best option (other than to define „cValidBlock as usual“) is to use conditional compilation.

The VO compiler does not knows the compiler variable __XSHARP__, and therefore ignores the code

between the „#else“ and the „#endif“, whereas the X# compiler defines this variable and leaves out

the code between „#ifndef“ and „else“. This is a very elegant solution to keep the source code

unique and respect different definitions. I have used this method very very often in the migration.

This change fixed the first two errors, and you will seen in your own migration that very often one

change removes several errors.

18. Juli 2017 Moving wLib2 from VO to X# Page 7

error XS0619: 'Functions._RegisterExit(void*)' is obsolete

The exact error was:

error XS0619: 'Functions._RegisterExit(void*)' is obsolete: ''_RegisterExit()' is not supported. Use an

event handler added to the AppDomain.CurrentDomain:ProcessExit event instead'

and it was occurring in this code:

Now, this code was modified by the xPorter because the language construct is not supported

anymore in .NET, the original code was simply

But since the .NET garbage collector works in a totally different manner than the VO one, this is not

more needed. So I changed the code to :

About the different behavior of the .NET garbage collector, this is the explanation that Chris Pyrgas

gave me:

„For example about RegisterAxit(), it works the opposite way in .NET than in VO. In .NET, destructors

are always called by default and if you want to prevent the GC for calling one, you need to call

GC.SuppressFinalize(). (in VO you need to call RegisterAxit() if the destructor must be called). Many

of those things are also explained in the vulcan help file in the chapter about migration, I think we

need to duplicate this in the x# help file..“

18. Juli 2017 Moving wLib2 from VO to X# Page 8

error XS0619: 'Functions.Buffer(dword)' is obsolete

The full error message was:

error XS0619: 'Functions.Buffer(dword)' is obsolete: ''Buffer()' is not supported, use MemAlloc() and

MemFree() instead'

and the offending code

and I have changed it to

If I’m honest: I don’t understand why the Buffer() function is not more supported – it returns a not

initialized string. I hope the development team supports this function in their own runtime.

At the moment the function can be replaced with a call to Space()

18. Juli 2017 Moving wLib2 from VO to X# Page 9

error XS9035: The first argument to PCall must be a 'typed function pointer'.

The original code is:

And I have changed it to

So this is too an easy fix, and you can see that the #ifdef __XSHARP__ is very important to keep code

compatible between VO an X#.

18. Juli 2017 Moving wLib2 from VO to X# Page 10

error XS0246: The type or namespace name '_GCDUMP' could not be found

I had this error on a long list of functions and variable definitions, all of them are related to the

garbage collector, and therefore they are totally outdated. For the moment I have decided to leave

them out in the X# version (again using #ifndef __XSHARP__). I hope to need to diagnose the .NET

garbage collector, and if I should need that, I will search for an implementation in C# and translate

then to X#

If transported code shows this error, most likely it is a function or class or structure that makes no

sense to have in X# or they simply have forgotten it (I had a problem with the wsprintf() function

missing from the Vulcan runtime – the X# team is aware of it and will implement it). I’m pretty sure

you will encounter some missing functions too.

18. Juli 2017 Moving wLib2 from VO to X# Page 11

error XS0619: 'Functions._VOLoadLibrary(string)' is obsolete

Again, the complete error message:

error XS0619: 'Functions._VOLoadLibrary(string)' is obsolete: ''_VOLoadLibrary()' is not supported,

use VulcanLoadLibrary() instead.'

The code was this one:

I’m using the dynamic loading of VO DLLs quite a lot. Originally it was to save time on application load

(a DLL load before first use will not delay the application load), and only for functionality that was not

needed every time (like printing/reporting or zipping). In the case of the report DLL, I could decide at

runtime which DLL to load, saving not only license costs, but also use different versions depending on

the environment.

In these cases I have decided to leave the load code completely out: if the relative library was in the

application references, the IsClass() function would return true, otherwise an error message would

be returned:

18. Juli 2017 Moving wLib2 from VO to X# Page 12

warning XS1030: #warning: 'The following method did not include a CLASS declaration'

This is a warning, but IMHO it should be an error, because it refers to the following code on the VO

side:

I have seen such constructs in many applications, and unfortunately they are not more supported in

.NET as the .NET runtime does not let distribute the class of more assemblies. That has to do with the

fact that the VO runtime creates the class method table at runtime, whereas in .NET it is builded at

compile time.

To solve this problem, there are at least 3 different possibilities:

- use a subclass, i.e. class MyListViewColumn inherit ListViewColumn. In the case of this

method this unfortunately does not work, as the ListView returns the ListViewColumns

object as types of ListViewColumn and not MyListViewColumn

- use extension methods (I will present a sample below), with a few limits:

when using late binding, the Vulcan runtime will not use these methods, access/assign will

not work as properties cannot be extended. And as last problem: you have not access to

protected instance variables inside the class.

- In most cases the best method would be to extend the VO GUI classes. Since you have to

recompile them in X#, you can add also these methods.

In my case, I have used the extension method. Unfortunately, in this case our friend #ifdef does not

works anymore, so we have to find another method.

In VO, I have moved this type of code to a special module. When xPorting the first time, I have

removed the relative prg file from the application and added another one. This is the VO side:

I had used this method in the VO 2.7 to 2.8 migration, to keep my library source compatible between

different VO versions, therefore the strange name (and textblock-ed entities).

18. Juli 2017 Moving wLib2 from VO to X# Page 13

On the X# side it looks so now:

With the VOInt27 module removed and the aaXSCompatibility.prg added. Since the xPorter does not

overwrite my project file, but only the prg files, I can repeat the process as often as I like without the

need to reconfigure my project.

And this is the code on my X# side:

The problem continues: I have also an added assign in my VO library:

This code cannot work as there is no possibility to use extension properties in .NET.

So I need to change this code completely to a pair of X# methods:

18. Juli 2017 Moving wLib2 from VO to X# Page 14

To be prepared, I have also removed the access/assign pair on the VO side and added two new

methods to the ListViewColumn class. (a change that requires to fix also all my VO applications!)

18. Juli 2017 Moving wLib2 from VO to X# Page 15

error XS0029: Cannot implicitly convert type 'void' to 'object'

This error was caused by this code:

A fully valid construct in Visual Objects, but not valid anymore in .NET, as there is no possiblity to

leave out the constructor chaining.

So I had to change the code to :

18. Juli 2017 Moving wLib2 from VO to X# Page 16

error XS0619: 'Functions.MemVarGet(string)' is obsolete: ''MemVarGet()' is not supported'

The next error is caused by the fact that the Vulcan runtime does not supports memory variables – a

feature that I need in my macro evaluation. The development team has announced that the X#

runtime will introduce support for these variables again. But in the meantime I have to comment out

the code. This is the changed part of code:

Other errors of the same series:

error XS0103: The name '_PublicFirst' does not exist in the current context

error XS0103: The name '_PublicNext' does not exist in the current context

error XS0103: The name '_MAXAS' does not exist in the current context

error XS0103: The name '_PrivateFirst' does not exist in the current context

error XS0103: The name '_PrivateNext' does not exist in the current context

These errors are caused again my my macro evaluation code:

Simple and effective change since there are no memvars:

18. Juli 2017 Moving wLib2 from VO to X# Page 17

So the X# version returns simply „false“.

