
Data-driven Programming

By

Johan Nel

A series of articles explaining the principles

Article 4: The application menu

November 2014

 i

Table of contents

1. BACK TO OUR APPLICATION MENU..1

2. DATA IS BEST STORED IN A WELL DESIGNED RELATIONAL DATABASE...................1

3. MAKING OUR MENU CLASS DATA AUGNOSTIC...3

4. THE APPLICATION FORM ...4

5. THE DATA INTERFACE LAYER..6

6. FORM = MENU ...7

7. SUMMARY...7

Listings

LISTING 1: POPULATED “DATABASE” WITH MENU AND MENU ITEM DATA ... 3

LISTING 2: EMPTY DDMENU CLASS.. 3

LISTING 3: SKELETON FORM... 4

LISTING 4: ADDING CONTROLS TO HELLOWOLDVN APPLICATION FORM.. 5

LISTING 5: ENHANCED DATA STORE INCLUDING APPLICATION DETAIL.. 6

LISTING 6: PSEUDO CLASS LAYOUT... 7

 1

1. Back to our application menu

Let’s take the lessons learned in the design of our CustomerView class in article 3 and see if

we can apply it to our application and specifically looking at the menu. In this article we will

be looking at extracting the details (data) that reside in our application menu and how we can

populate it at runtime. Unfortunately we need to get a bit off topic, since we will address

other issues too. In the first article it was stated that programming should be done at an

abstract level. We will therefore start with initial code and hopfully show how we can move

to this abract code level.

Lets get started!

2. Data is best stored in a well designed relational database

First question we ask is what data describe a menu? We look at the code generated for our

menu and start extracting the data components. In this context we state that our application

can have 0 or 1 main menu. MainMenu can have 0 or many MenuItems. Each of MenuItem

can have other MenuItems belonging to it or otherwise stated, a MenuItem can be the owner

to other Menus, or MenuItem can perform a certain task, let’s call it MenuEvent. MenuItems

can also be sub-grouped by a special menu item type called a MenuSeparator with the only

purpose of spacing our related MenuItems, instead of grouping them in a sub-menu.

Our first task would be to design an external store for our menu data, based on the above

statements using basic relational theory (Table 1 and Table 2). Each menu will have a unique

name and some description that allow any reader to understand the purpose in database

language. Each menu item needs to belong to only 1 menu (we will later contradict this

thohg), it need to have an order in the list on the same level, a display value and it can be one

and only one of: the owner of another menu, be a divider or perform a process.

Table 1: Menu definition table

ColumnName Column Type Column Width Column Dec

Primary key (PK)

Foreign key (FK)

MENU_ID C 50 0 PK

DESCRIPT C 100 0

 2

Table 2: Menu item table

ColumnName Column Type Column Width Column Dec

Primary key (PK)

Foreign key (FK)

Unique key (UK)

MENU_ID C 50 0 PK, FK1

SEQ N 3 0 PK

DISPLAY C 50 0

EVENTTYPE C 50 0

EVENTID C 50 0 FK2

In the next step we will try and populate our datatables with rows based on what we see in our

IDE designed MenuStrip (Table 3 and Table 4) to describe our menu in relatational data

language.

Table 3: Menu definition data

MENUID DESCRIPT

mainmenu Main menu of HelloWorldVN application

filemenu File menu of HelloWorldVN application

Table 4: Menu item data

MENUID SEQ DISPLAY EVENTTYPE EVENTID

mainmenu 0 &File menu filemenu

filemenu 0 &Hello world eventclick menuitemclick

filemenu 1 How are &you eventclick menuitemclick

filemenu 2 Good&bye world eventclick menuitemclick

filemenu 3 - separator

filemenu 4 E&xit close closeclick

 3

As example we will use the String File Data Management System. The format was put in the

public domain and MicroSoft decided to create there own version of StringPad, known as

NotePad that was published as open source. With our new tools we start creating our first

Menu Data Management Store and call it HelloWorldVN.exe.menu.

The results of our efforts are shown in Listing 1.

Listing 1: Populated “database” with menu and menu item data
[menu]
mainmenu=descript:Main menu of HelloWorldVN applica tion
filemenu=descript:File menu of HelloWorldVN applica tion

[menuitem]
mainmenu0=display:&File;eventtype:menu;eventid:file menu
filemenu0=display:&Hello world;eventtype:eventclick ;eventid:menuitemclick
filemenu1=display:How are &you;eventtype:eventclick ;eventid:menuitemclick
filemenu2=display: Good&bye world;;eventtype:eventc lick;eventid:menuitemclick
filemenu3=display:-;eventtype:seperator;eventid:
filemenu4=display:E&xit;eventtype:eventclick;eventi d:closeclick

We now have a repository where we can manage and ask questions about our HelloWorldVN

menus. No need to look at source anymore. Anybody with NotePad can find the info they

need regarding HelloWorldVN menus (using <Ctrl>F). At the moment it is not of much use

though, we created a new task that needs to be maintained on top of our already overloaded

job, we need to maintain the menu inside of our application and we need to maintain our

menu data repository.

3. Making our menu class data augnostic

So let us look at making some changes. Firstly we need to write some code, sorry no drag

and drop designer here. We software developers, not relying on somebody else doing the

dirty work for us. First step will be to create a class and we can use our HelloWorldVN

BasicForm as a start and change or remove code that is not applicable to our MenuStrip. We

end up with a menu shell as in Listing 2.

Listing 2: Empty ddMenu class
CLASS ddMenu INHERIT System.Windows.Forms.MenuStrip

 CONSTRUCTOR(sName AS STRING)
 SUPER()
 IF sName:Length <= 0
 sName := “ddMenu”
 ENDIF
 SELF:InitializeMenu(sName)
 RETURN

 METHOD InitializeMenu(sName AS STRING) AS VOID
 SELF:Name := sName
 //Load menu items

 4

 RETURN

END CLASS

We have successfully implemented the basic framework for our menu system. It contains a

Name data property and we effectively did not hard code it, although not external to the

application, we can state that our menu will receive the data at runtime and not compile time.

In the event of our menu not receiving any data, we auto-populate it. For all practical

purposes we can tell our application form to consume our class via an object. It will be

displayed on the form. Mission accomplished!

4. The application form

We can therefore modify our application form to tell it to make use of this new agnostic menu

feature. So let us write some code again, or use our WED tool to do some work and strip out

the details that we don’t need (Listing 3).

Listing 3: Skeleton form
CLASS ddAppForm INHERIT System.Windows.Forms.Form

CONSTRUCTOR()
 SUPER()
 SELF:InitializeForm()
RETURN

 METHOD InitializeForm() AS VOID

 SELF:SuspendLayout()

 SELF:ClientSize := System.Drawing.Size{392 , 264}
 SELF:Name := "ddAppForm"
 SELF:Text := "Data-driven application form"

 SELF:Controls:Add(ddMenu{“mainmenu”})

 SELF:ResumeLayout()

 RETURN

END CLASS

Something is however not right. We still have hard coded data in our ddAppForm. And our

form has one function: To receive a menu and do something with it. Is it our form doing it or

is the menu clever enough to do it? We don’t know but we don’t care at the moment actually.

Our form’s task is to contain a menu and let it do its purpose. Lets see if we can rectify the

situation. We determined that our form need a menu, we need to add something that will tell

the form that it needs a new member of type menu. We can define a way for the form to fetch

menus. However with some foresight we also identify that the form might need other types of

members, not only menus. Does the form know what members it will have? No, it only

 5

knows that it might have members of which menu we known of, there might also be some in

the unknown. If we look at our initial WED designed code it is doing some replication.

When we hear the word replication we need to think LOOP. So with this in mind let us sub

group this task. We call it MemberBuild instead of MenuGet/Fetch/Build and enhance our

form accordingly (Listing 4). We also determine how MemberBuild will work by inspection

of the WED form that we create initially for HelloWoldVN. To make it consistent, we

observe that our initial form has a collection property that members were added to, called

Controls. If we research MenuStrip we see that it appears all members will somehow have a

base class they inherit from Control. That gives the first hint to what we need to do and we

can generate some generic code. Our terminology is however inconsistent, MemberBuild is

less descriptive of what we doing, so we replace it with ControlsAdd (Listing 4).

Listing 4: Adding controls to HelloWoldVN application form
METHOD InitializeForm() AS VOID

…
 SELF:ControlsAdd()

…
RETURN

METHOD ControlsAdd() AS VOID
 LOCAL lstControls AS List<Control>
 lstControls := List<Control>{}
 lstControls:Add(ddMenu{“mainmenu”})
 FOREACH ctrl AS Control IN lstControl
 SELF:Controls:Add(ctrl)
 NEXT
RETURN

Houston we have trouble, our form can add controls, but it need some method of identifying

them, there might be more than a mainmenu. So our form need to do some shouting: “Hello

Controls of the VN World, I have a container and I need to fill it up!!!”. The biggest problem

we still have is that although the form has empty shelvespace, it needs to request products

from the supplier to fill them. A supermarket is not a supermarket if it is a building with

empty shelves. We need to advertise to our suppliers that we need stock, the how is however

unknown. The data “mainmenu” is stil hard coded and we anticipate we will not only stock

“mainmenu”. We can remove it and move it higher up the tree, however we just passing the

buck. We want to do it once to make it persistent to our data-driven rule: Data should reside

outside of the application, it is not hard coded.

So we need to gather some data of what we want to sell, if we a bakery, we sell bread, not

meat. That we will leave to the butcher. Bread needs some ingredients, however what those

ingredients are, we don’t care it is the supplier’s responsibility. Same with our form class it

needs some data to define what we want in our collection of controls. We defined that data

 6

resided outside of an application. It is not hard coded. So lets see if our String Data

Management System Repository has the details (Listing 1). There is no descriptive

information that we can see. We quickly realise our data store have some flaws, it constains a

missing link, we need to enhance it. So off we go and brainstorm with our data administrator

what we need. The following list all the requirements identified:

• Our form need some data to describe properties;

• Our application form needs a way to identify what controls it need to collect;

• We need to be able to associate the form with it’s collection of controls;

Our DBA gave the requirements some thought and came up with the following solution:

• We should enhance the datastore not to only include menus. A new name is
required, since it contain some features other than menu: HelloWorldVN.exe.db;

• Add an additional substorage to describe our application form;

• Create a data property telling the form it has a control type menu and that the
menu is identified by mainmenu;

• Some properties of application form are hardcoded and we need to define them in
our external data store

• We need a method to communicate between our data store and form;

The new datastore contain the following after the enhancements were made (Listing 5).

Listing 5: Enhanced data store including application detail
[applicationform]
name=HelloWorldVN
text=Hello World Vulcan Application
controls=menu:mainmenu

[menu]
mainmenu=descript:Main menu of HelloWorldVN applica tion
filemenu=descript:File menu of HelloWorldVN applica tion

[menuitem]
mainmenu0=display:&File;eventtype:menu;eventid:file menu
filemenu0=display:&Hello world;eventtype:eventclick ;eventid:menuitemclick
filemenu1=display:How are &you;eventtype:eventclick ;eventid:menuitemclick
filemenu2=display: Good&bye world;;eventtype:eventc lick;eventid:menuitemclick
filemenu3=display:-;eventtype:seperator;eventid:
filemenu4=display:E&xit;eventtype:eventclick;eventi d:closeclick

5. The data interface layer

We now need a way for our form to communicate with the data store. After doing some

extensive research, we discover that on FacelessTrading a product is available that can

communicate between our data store and our application called jhnIniFile. Knowing a private

investigator, we call Magnum PI and request to use his connections to find out if this product

 7

can deliver the goods. He immediately makes contact with the Internet Investigation Agency

(IIA) and they determine that it appears to be a good product. It shows a value of 100

browser hits (BH) and 85 download hits (DH) with no return (of downloads) hits (RH). We

decide to spend some of our hardearned Personal Hits (PH) on the product and in no time we

are comfortable that it was a good investment.

It is time to get back to our development environment and become productive.

6. Form = Menu

As efficient software developers we review our code on a regular basis. However we all look

at code in different ways. I will share my view on our AppForm and Menu hopefully

showing what I meant by abstract programming.

I can summarize it with the pseudo-code in ().

Listing 6: Pseudo class layout
CLASS <ClassName>[INHERIT <BaseClass>]

CONSTRUCTOR(<ClassProperties>)
SUPER()
SELF:SetDefaultsForClassProperties
SELF:Initialize<ClassName>(<ClassProperties>)

RETURN

METHOD SELF:Initialize<ClassName>(<ClassProperties>) AS VOID
 FOREACH property IN <ClassProperties>
 SELF:<Property> := property
 NEXT
 FOREACH member IN <MemberCollection> // We can pu t this in MembersAdd method if required
 SELF:<MemberCollection>:Add(member)
 NEXT
 RETURN

END CLASS

7. Summary

I hope this article in the series gave enough insight into how we look at code from a data-

driven perspective. In the next article we will look at our interface between the client

(application and menu) and datastore. We will look at an interface layer and also at ways we

can write code once and re-use many times.

Till the next article: The client<->data interface.

