
Data-driven Programming

By

Johan Nel

A series of articles explaining the principles

Article 6: EAV and OLT: Enhancing the concepts

November 2014

 i

Table of contents

1. INTRODUCTION ..1

2. A PERSISTENT INTERFACE LAYER..1

3. ONE (TRUE) LOOKUP TABLE (OTLT) ...1

3.1 THE BASIC LOOKUP TABLE ...2

3.2 THE “ BETTER /PERSISTENT” LOOKUP TABLE DESIGN ...3

3.3 OTLT...4

3.4 TWO TABLE LOOKUP (TTL) ..6

4. ENTITY ATTRIBUTE VALUE (EAV)7

5. CHANGING OUR DATASTORE TO TTLT & EAV............... ...9

6. SUMMARY...15

 ii

Tables

TABLE 1: BASIC LOOKUP TABLE STRUCTURE.. 2

TABLE 2: BASIC LOOKUP STRUCTURE... 3

TABLE 3: ONE LOOKUP STRUCTURE... 4

TABLE 4: ONE LOOKUP TABLE WITH GENDER AND HAIRCOLOUR.. 5

TABLE 5: ONE LOOKUP TABLE COMPROMISE.. 6

TABLE 6: TWO TABLE LOOKUP MASTER.. 6

TABLE 7: TWO TABLE LOOKUP DETAILS... 6

TABLE 8: DATABASE CLASS TABLE STRUCTURE... 14

TABLE 9: DATABASE CLASS TABLE STRUCTURE MODIFIED FOR EAV ... 14

Listings

LISTING 1: TYPICAL LOOKUP DATABASE SCRIPT AND TABLE REFERENCING IT... 2

LISTING 2: INTERNAL UNIQUE ID LOOKUP TABLE IMPLEMENTATION ... 3

LISTING 3: ONE LOOKUP TABLE IMPLEMENTATION... 5

LISTING 4: ONE LOOKUP TABLE REDESIGN IMPLICATIONS... 5

LISTING 5: TWO TABLE LOOKUP IMPLEMENTATION... 7

LISTING 6: CHECKING FOR ENTEGRITY ISSUES WITH A TWO TABLE LOOKUP APPROACH.. 7

LISTING 7: ARTICLE 4 DATASTORE DEFINITION... 9

LISTING 8: DATA STORE BREAKDOWN INTO SMALLER COMPONENTS.. 10

LISTING 9: DATA STORE CLASS TABLE.. 11

LISTING 10: TTLT LKPDEF & LKPITEM... 11

LISTING 11: DATA STORE CLASS TABLE REFERENCING THE TTLT (CLASS.CLASSTYPE_NO REF
LKPITEM.LKPITEM.LKPITEM_NO ... 11

LISTING 12: DATA STORE CLASS MEMBER TABLE REFERENCING THE TTLT ... 12

LISTING 13: CLASS AND MEMBER VIEWS INTERFACING TO TTLT ... 12

LISTING 14: DATA STORE FORMAT.. 13

LISTING 15: DATA STORE WITH SPARSELY FILLED PROPERTIES FORMAT... 14

 1

1. Introduction

In the previous article we have created our first working data-driven application doing exactly

what it needs to do, without actually knowing what it is doing, or for that matter what it will

be doing in the future☺ However, all it knows is that it has a [Application]Form and at the

moment it can contain some members. It knows where to (the MemberInterface) ask for

members. Our interface layer is a bit limited though, it only knows how to communicate

(delegates) and can only fetch MenuStrips and MenuStrip Items and tell them how to become

members via delegation. We will however take a bit of an off the beaten track approach with

this article. Well I know you might think we already off the track with a data-driven

approach, but we will look at ways how we can make our interface layer persistent.

2. A persistent interface layer

If we look at our datastore (<Application>.exe.ini), it is easy to see that just as in the case of

business applications our types of containers in our store will grow as we add new features.

A customer table will soon have an order table, which in turn will have an order item table.

We need to also add to our presentation layer some process to communicate with them. It is

the same with data-driven applications. However, that is one of the fundamental issues that I

believe why developers shy away form the concept. They do not think abstract enough. We

will therefore look at ways of trying to achieve a persistent datastore and a persistent internal

interface for know and unknown members. Hence the topic of this article OLT & EAV.

3. One (True) Lookup Table (OTLT)

During software and database development, we encounter frequently many tables consisting

of Identity and Value pairs. I will not go into the details, but there were theorists who say

why do we need all these similar little small tables. Lets rather create one big Identity Value

table and soon the concept of OTLT was created. There are however positives and negatives.

The purists immediately shoot it down, saying that we create another maintenance nightmare

to ensure the property (column or field) will only allow the correct values. It is a true

statement if not implemented correctly. It does however reduce the data base administrator’s

task of creating all these repetitive tables. However, to ensure integrity, it burdens the

administrator and or developer’s task of creating integrity rules. In most cases what will

 2

happen is that it is developer driven, and they will quickly from their perspective indicate that

the integrity rules should be application driven. The application will ensure that the integrity

is applied. Unfortunately, what happens if somebody not knowing (the new DBA) adds items

to the OTLT directly via the database bypassing the system integrity rules? We can easily end

up with a sexual orientation column (Hetero, Homo, Bi) saying Sheep which should actually

be part of a selection for farming (no pun intended)☺. Well that was a bit tongue in the

cheek, however if you look at the doom prophets of the concept and the examples they

provide of what can go wrong that might be the case. My rule of thumb is that it does have its

merits when we only need an identifier and a description. When more than a description is

however required to describe the feature, create a separate table. In most cases though, when

we working with abstract programming it is a bit of a different ball game…

In this section we will look at the concept and how I believe it can be utilised effectively

without creating potential anarchy.

3.1 The basic lookup table

Lets start with the basic structure of a lookup table (Table 1) and we will look at a gender

column in our database describing a person containing a property (column) gender. We will

have a table gender that is referenced from person and we will probably create an integrity

check to indicate it is required and that our gender table records can only be deleted if there is

no person with the gender type that became obsolete (Listing 1):

Table 1: Basic lookup table structure

Gender_ID Gender_Description
M Male
F Female
U Unknown

Listing 1: Typical lookup database script and table referencing it
CREATE TABLE gender
 gender_id VARCHAR(1) NOT NULL PRIMARY KEY,
 gender_description VARCHAR(10) NOT NULL;

INSERT INTO gender VALUES (‘F’, ‘Female’), (‘M’, ‘M ale’), (‘U’, ‘Unknown’);

ALTER TABLE person
 ADD gender_id VARCHAR(1) DEFAULT ‘U’ NOT NULL REFE RENCE gender(gender_id)
 ON DELETE RESTRICT ON UPDATE CASCADE;

CREATE VIEW personview AS
 SELECT p.*, g.gender_description FROM person p, ge nder g WHERE p.gender_id = g.gender_id;

 3

All well, miraculously after running the above sql in our database admin tool all persons will

have a gender type ‘U’ and we can start correcting the column till we don’t have any more

Unknown genders where we know thegender of each person.

Looking at the database script we can state that it seems to be fair and will cater for all that is

required. We can insert new gender types and update person to consume the new gender type.

We can delete gender types and our database will ensure we don’t delete any if the gender

type if it is still in use. Mission accomplished. Oh, we missed one! We can update or code

for female to rather use ‘W’:’Woman’ and all persons with gender ‘F’ will change to ‘W’.

Warning bells however, if we change ‘U’:’Unknown’ to ‘N’:’Not known’, suddenly we have

troubles when we insert a new person and do not specify gender� Our person table need

some care. We want to make our database persistent. An anomaly can creep in.

3.2 The “better/persistent” lookup table design

Our gender lookup table in section 3.1 has a potential for failing, we cannot change the code

used for Unknown gender and hope our database will still run happily after. A principle I

implement in practise is that I try to eliminate cascaded updates as far as possible at database

design time. Ensuring persistence, I rather make use of a lets call it “internal unique id” and a

“business unique id”. There are different ways to implement this, some might prefer to use a

GUID, I prefer to use a Sequence (AutoNumber, Serial) type. Different RDBMS’s use

diffirent names for this feature. I will make use of my preferred RDBMS (PostgreSQL)

syntax of [big]serial. Table 2 shows the typical table and Listing 2 the script changes required

in blue.

Table 2: Basic lookup structure

Gender_No Gender_ID Gender_Description
1 U Unknown
2 M Male
3 F Female

Listing 2: Internal unique id lookup table implementation
CREATE TABLE gender
 gender_no SERIAL NOT NULL PRIMARY KEY,
 gender_id VARCHAR(1) NOT NULL UNIQUE,
 gender_description VARCHAR(10) NOT NULL;

INSERT INTO gender
 (gender_id, gender_descripton)
VALUES (‘U’, ‘Unknown’), (‘M’, ‘Male’), (‘F’, ‘Fema le’);

ALTER TABLE person

 4

 ADD gender _no INTEGER DEFAULT 1 NOT NULL REFERENCE gender(gender_no)
 ON DELETE RESTRICT ON UPDATE CASCADE;

CREATE VIEW personview AS
 SELECT p.*, g.gender_id, g.gender_description
 FROM person p, gender g WHERE p.gender_no = g.gender_no ;

Again, after running the above, our person table will have a default gender[_no] = 1. When

viewing through our personview, it will show that gender[_no] = 1, is associated with

gender_id = ‘U’, with gender_description = ‘Unknown’. We can add new gender types, we

can update the business unique id, and our integrity will be intact. What we need to ensure is

that we always add the default first into our lookup table hence having a serial value of 1.

There are many practises used for naming conventions. My preference (up for debate) is to

re-use the lookup table unique identifier, that way I do not have to remember that

person.gender = gender.gender_no, it can be altered as preferred by everyone, just be

persistent or is it consistent. I always use <gender>_no for references and persistently name

all columns <gender>_no. Nobody needs to try and figure out that gender refers to gender_no

in other tables. <Gender> will also be the name of the table where it is (normally) maintained

in. In any other table it will be a reference. When I need to define a number as column in a

table, e.g phone number, I use the practise of using <phone>_nr. It is easily identified that it

is a property that the user can manipulate directly.

You probably think, so what does this have to do with OTLT? More in the next subsection.

3.3 OTLT

According to the one lookup table concept we don’t need a gender lookup table, the reason be

that we can also have a hair colour property describing a person. Lets start creating our one

lookup table (Table 3), and we fill it with our gender details that we know.

Table 3: One lookup structure

LkpItem_No LkpItem_ID LkpItem_Description
1 U Unknown
2 M Male
3 F Female

We will now update our person table (Listing 3).

 5

Listing 3: One lookup table implementation
CREATE TABLE lkpitem
 lkpitem_no SERIAL NOT NULL PRIMARY KEY,
 lkpitem _id VARCHAR(1) NOT NULL UNIQUE,
 lkpitem _description VARCHAR(10) NOT NULL;

INSERT INTO lkpitem
 (lkpitem_id, lkpitem_descripton)
VALUES (‘U’, ‘Unknown’), (‘M’, ‘Male’), (‘F’, ‘Fema le’);

ALTER TABLE person
 ADD gender_no INTEGER DEFAULT 1 NOT NULL REFERENCE lkpitem(lkpitem_no)
 ON DELETE RESTRICT ON UPDATE CASCADE;

CREATE VIEW personview AS
 SELECT p.*, l .lkpitem_id as gender_id, l.lkpitem_description as gender_description
 FROM person p, lkpitem l WHERE p.gender_no = l.lkpitem_no ;

We can give self a pat on the shoulder, we have just created a platform for less work☺ All

we need to do now is add out haircolours (Table 4) and adapt our person table accordingly

(Listing 4).

Table 4: One lookup table with gender and haircolour

LkpItem_No LkpItem_ID LkpItem_Description
1 U Unknown
2 M Male
3 F Female
4 B Black
5 R Brown
6 E Red
7 L Blond

Listing 4: One lookup table redesign implications
INSERT INTO lkpitem
 (lkpitem_id, lkpitem_descripton)
VALUES (‘B’, ‘Black’), (‘R’, ‘Brown’), (‘E’, ‘Red’), (‘L’, ‘Blond’) ;

ALTER TABLE person
 ALTER gender_no CHECK gender_no = 1 OR gender_no BE TWEEN 2 AND 3
 ADD haircolor_no INTEGER DEFAULT 1 NOT NULL REFEREN CE lkpitem(lkpitem_no)
 ON DELETE RESTRICT ON UPDATE CASCADE
 CHECK haircolour_no = 1 OR haircolour_n o BETWEEN 4 AND 7) ;

CREATE VIEW personview AS
 SELECT p.*,
 g.lkpitem_id as gender_id, g.lkpitem_descri ption as gender_description,
 h.lkpitem_id as haircolor_id, h.lkpitem_des cription as haircolour_description
 FROM person p, lkpitem g, lkpitem h
 WHERE p.gender_no = g.lkpitem_no and p.haircolour_no = h.lkpitem_no ;

Our database will keep integrity based on what we know. However, what if we need to add

another haircolour? Not too much trouble we can add (‘8’,‘Ashblond’) and update person to

allow a range of 4 to 8. We will have a problem though if we discover a new gender type, our

lookup table work on the principle of grouped items. We do not cater for disjointed groups.

If you look at the purists shooting down the concept this is how they approach it. What we

 6

need, due to creating less tables, is our columns in the table needs to expand. Gain by less

tables, compromise with an additional column(s) (Table 5). I also add another column called

default.

Table 5: One lookup table compromise

LkpItem_No
(PK)

LkpColumn_ID
(UK1), (UK2)

LkpItem_ID
(UK1)

LkpItem_Description
Default
(UK2)

1 Gender_no U Unknown Y
2 Gender_no M Male N
3 Gender_no F Female N
4 Haircolour_no B Black N
5 Haircolor_no R Brown N
6 Haircolour_no E Red N
7 Haircolour_no L Blond N
8 Haircolour_no U Unknown Y

I hope this make sense. There is one issue in the above, and maybe you observed it, but it

does not matter. The Brown hair colo(u)r will get lost in our database. A typing aka human

error. It is therefore that I rather prefer a Two Table Lookup approach.

3.4 Two Table Lookup (TTL)

Well as you guess this approach is a bit more work, however we achieve better integrity.

Table 6 and Table 7 list the table structure:

Table 6: Two table lookup master

LkpDef_No
(PK)

LkpDef_ID
(UK)

LkpDef_Description

1 gender_no Gender of a person
2 haircolour_no Haircolour of a person

Table 7: Two table lookup details

LkpItem_No
(PK)

LkpDef_No
(UK1),
(UK2)

LkpItem_ID
(UK1)

LkpItem_Description
Default
(UK2)

1 1 U Unknown Y
2 1 M Male N
3 1 F Female N
4 2 B Black N
5 2 R Brown N
6 2 E Red N
7 2 L Blond N
8 2 U Unknown Y

 7

We need to alter our table logic to incorporate this two table lookup concept.

Listing 5: Two table lookup implementation
CREATE TABLE person
 …
 gender_no INTEGER NOT NULL REFERENCE lkpitem(lkpit em_no),
 haircolour_no INTEGER NOT NULL REFERENCE lkpitem(l kpitem_no)
 ON DELETE RESTRICT ON UPDATE CASCADE
 TRIGGER ON INSERT OR UPDATE person_trig ger_b_ins_upd;

CREATE TRIGGER FUNCTION person_trigger_b_ins_upd AS
 IF NEW.gender_no IS NULL
 SELECT lkpitem_no FROM lkpdef d, lkpitem i
 WHERE d.lkpdef_no = i.lkpdef_no
 AND d.lkpdef_id = ‘gender_no’
 AND lkpitem.default = true INTO NEW.person.g ender_no
 ELSE
 SELECT lkpdef.lkpdef_id FROM lkpdef d, lkpitem i
 WHERE d.lkpdef_no = i.lkpdef_no
 AND i.lkpitem_no = NEW.gender_no INTO col_na me;
 IF col_name <> ‘gender_no’
 THROW ‘Gender does not contain a valid referen ce’
 ENDIF;
 IF NEW.haircolour_no IS NULL
 --Repeat the above, same as gender_no check. Jus t replace gender with haircolour
 ENDIF;
RETURN TRIGGER;

CREATE VIEW personview AS
 SELECT p.*,
 g.lkpitem_id as gender_id, g.lkpitem_descri ption as gender_description,
 h.lkpitem_id as haircolor_id, h.lkpitem_des cription as haircolour_description
 FROM person p, lkpitem g, lkpitem h
 WHERE p.gender_no = g.lkpitem_no and p.haircolour _no = h.lkpitem_no;

We have successfully created a Two Lookup Table approach that is both manageable, but also

ensure integrity at database level.

And for checking if something has slipped through the cracks, we can do the query per

Listing 6 and replace ‘gender_no’ with the applicable column we want to verify.

Listing 6: Checking for entegrity issues with a two table lookup approach
SELECT * FROM person p, lkpdef d, lkpitem i
 WHERE p.gender_no = i.lkpitem_no
 AND i.lkpdef_no = d.lkpdef_no
 AND d.lkpdef_id <> ‘gender_no’;

Enough said about the concept of lookup table design, it is time to look at Entity Attribute

Value.

4. Entity Attribute Value (EAV)

According to references (Google & Wikipedia and other sources) the concept of EAV

originated from clinical data. In general it implies that not all data is applicable and we create

a sparsely filled table where most of the columns will have no data, or we have a rapid

increase in new data requirements. Our poor DBA is thrown in over his head, and we have

two options, we appoint another DBA to spread the workload, or we work smarter. The idea

 8

of EAV is that we know some basic data requirements, e.g. in the clinical environment we

have patients. We will define a unique identity for the patient: social security number, ID

document number, passport number, etc. and some descriptive data: firstname, lastname, title,

address, etc. However we need now to define illness. There are quite a number of illnesses

the patient can have: from none, to quite a few. It is almost impossible to define a table that

can contain a column for all potential illnesses. We also have a problem in presenting it to

the application user, since the screen manufacturers think it is crazy that we need a 20ft x 15ft

screen to ensure our illness form is fitting onto 1 screen. Well maybe not crazy, but at

minimum we smoking or sniffing stuff. Another field where this is a scenario is in the

research arena. They start out with a basic list of data required, and as the data is analysed,

new data requirements pop up.

So how does the concept help with managing data?

Lets look at the basic design for a research trial and we define that we need to have a research

identification, the purpose and data for data1, data2, data3 and data4 measured over a period.

Off we go and design our database:

Trial_ID Purpose
0001/001/00001 Trial to investigate the inter-dependency between data1 to data4 over time

since application of fertiliser XYZ

Trial_ID Measurement_Date Data1 Data2 Data3 Data4
0001/001/00001 2012-01-15 0.1 0.3 0.7 0.9
0001/001/00001 2012-01-16 0.3 0.1 0.6 0.0

After the first couple of weeks into the trial it is realised that Data4 needs a further

breakdown, which leads to researchers believing that this new data4.8 potentially have an

interaction to Data1 after statistical analysis of a couple of weeks data gathering.

And here is where the EAV model comes into play.

We rather develop a 3 table approach where our Measurement data is stored in an EAV data

model E(Measurement)A(Data_Type)V(Data_Value). We can easily include new

measurements by adding new data types to our two lookup table implementation☺:

 9

Table Columns of table
Trial Trial_ID Purpose
Measurements Trial_ID Measurement_Date
Measurement_data Trial_ID Measurement_Date Data_Type Data_Value

Just imagine, if a new trial is started without EAV. And Data1-DataF is not required or have

no meaning in the trial. It is required to have DataN…DataZ, but also Data0X…DataT5. I

know which approach I will follow and it is not the typical relational theory approach.

How does this all tie up to data-driven programming? Well we said in software development

terms that [Abstract]Form = [Abstact]Menu = [Abstract]MenuItem = OBJECT|CLASS. So

lets look at common properties.

• All classes have an unique id;

• (Almost) all classes have a descriptive (Text) property

• All classes have 0 or many parameters required at instantiation;

• All classes have properties that describes them in more details;

• All classes have methods or events that do some purpose;

• Not all classes have the same properties, methods and events although some might
share the same.

To me this sound like a typical TTLT & EAV model. Back to the drawing board, we need to

see if we can implement the TTLT and EAV in our datastore.

5. Changing our datastore to TTLT & EAV

Firstly let us review the datastore used in Article 4 (Listing 7):

Listing 7: Article 4 datastore definition
[applicationform]
properties=name:HelloWorldVN;text:Hello World Vulca n Application
controls=menu:mainmenu;datagrid:datagridview

[menu]
mainmenu=text:Main menu of HelloWorldVN application
filemenu=text:File menu of HelloWorldVN application

[menuitem]
mainmenu0=text:&File;eventtype:menu;eventid:filemen u
filemenu0=text:&Hello world;eventtype:eventclick;ev entid:menuitemclick
filemenu1=text:How are &you;eventtype:eventclick;ev entid:menuitemclick
filemenu2=text:Good&bye world;eventtype:eventclick; eventid:menuitemclick
filemenu3=eventtype:separator
filemenu4=text:E&xit;eventtype:eventclose;eventid:m enuitemclose

[datagrid]

 10

datagridview=A data grid

We have an entry point defined as applicationform or in more detail an application containing

a form. Form contains member(s):mainmenu and datagridview (in the unknown currently)

and some properties:name and text.

It also defines menu, menu item and datagrid. Each containing member(s) and or events that

belong to eventtypes, until we reach the bottom or no more members are defined. The end of

the chain.

Listing 8: Data store breakdown into smaller components
[application]
HelloWorldVN=text:Hello World Vulcan Application;me mbertypeexec:form;memberid:HelloWorldVN

[form]
HelloWorldVN=text:Hello World Vulcan Application;me mbertype:menu;memberid:mainmenu

[menu]
mainmenu=text:Main menu of HelloWorldVN application ; ~ // ~ means continuation of line
 membertype:menuitem;memberid:menuitemfile
filemenu=text:File menu of HelloWorldVN application ; ~
 membertype:menuitem;memberid:menuitemfile; ~
 membertype:menuitem;memberid:menuitemhello ; ~
 membertype:menuitem;memberid:menuitemhowyo u; ~
 membertype:separator;memberid:separator; ~
 membertype:menuitem;memberid:menuitemexit

[menuitem]
menuitemfile=text:&File;membertype:menu;menuid:file menu
menuitemhello=text:&Hello world;eventid:menuitemcli ck
menuitemhowyou=text:How are &you;eventid:menuitemcl ick
menuitembye=text:Good&bye world;eventid:menuitemcli ck
menuitemexit=text:E&xit;eventid:menuitemclose

[separator]
separator=text:Menu separator

[event]
menuitemclick=eventtype:eventclick;
menuitemclose=eventtype:eventclose

[eventtype]
eventclick=event:Click;action:add;addtype:EventHand ler{owner, @MenuItemClick()}
eventclose=event:Click;action:add;addtype:EventHand ler{owner, @MenuClose()}

[datagrid]
datagridview=A data grid

When we look at the above we can see it is becoming quite a mess trying to define all the

types of classes, members, properties and events. The IniFile concept is also not ideal, but we

will have to try and make it work to explain the concept. First things first, lets see if we can

identify descriptors that could potentially assist in cleaning up the above making use of the

concept of <Identifier>_no, <Identifier>_id, etc.

Classes could be a potential (Listing 9):

 11

Listing 9: Data store class table
[class]
1=type:application;id:HelloWorldVN;text:Hello World Vulcan Application;
2=type:form;id:HelloWorldVN;text:Hello World Vulcan Application Form;
3=type:menu;id:mainmenu;text:Main menu of HelloWorl dVN application;
4=type:menu;id:filemenu;text:File menu of HelloWorl dVN application;
5=type:menuitem;id:menuitemfile;text:&File
6=type:menuitem;id:menuitemhello;text:&&Hello world ;
7=type:menuitem;id:menuitemhowyou;text:How are &you
8=type:menuitem;id:menuitembye;text:Good &bye
9=type:menuitem;id:menuitemxit;text:E&xit
10=type:separator;id:separator

Our datastore seems to look a lot simpler than before the change, we have defined each class

having a unique <Class>_no (internal unique id) and a unique <Class>_id (business unique

id). However, looking in more detail, we can see that we have a property “[class]type” that

looks like a typical example that we can put in a TTLT (Listing 10).

Listing 10: TTLT lkpdef & lkpitem
[lkpdef]
1=lkpdef_id:classtype;lkpdef_description:Types of c lasses
2=lkpdef_id:eventclick;lkpdef_description:Types of events

[lkpitem]
1=lkpdef_no:1;lkpitem_id:application;default:Y
2=lkpdef_no:1;lkpitem_id:form;
3=lkpdef_no:1;lkpitem_id:menu;
4=lkpdef_no:1;lkpitem_id:menuitem;
5=lkpdef_no:1;lkpitem_id:separator;
6=lkpdef_no:2;lkpitem_id:menuitemclickevent;Default :Y
6=lkpdef_no:2;lkpitem_id:applicationclose;

We need to update our class datastore to make use of this reference TTLT (Listing 11).

Listing 11: Data store class table referencing the TTLT (class.classtype_no REF lkpitem.lkpitem.lkpitem_no
[class]
1=classtype_no:1;class_id:HelloWorldVN;text:Hello W orld Vulcan Application;
2=classtype_no:2;class_id:HelloWorldVN;text:Hello W orld Vulcan Application Form;
3=classtype_no:3;class_id:mainmenu;text:Main menu o f HelloWorldVN application;
4=classtype_no:3;class_id:filemenu;text:File menu o f HelloWorldVN application;
5=classtype_no:4;class_id:menuitemfile;text:&File
6=classtype_no:4;class_id:menuitemhello;text:&Hello world;
7=classtype_no:4;class_id:menuitemhowyou;text:How a re &you
8=classtype_no:4;class_id:menuitembye;text:Good &by e
9=classtype_no:4;class_id:menuitemxit;text:E&xit
10=classtype_no:5;class_id:separator

We have defined our classes on an abstract level making use of a TTLT, we still need to

associate these classes together via a member list. We call it classmember with

classmember.class_no REF class.class_no, membertype_no REF lkpitem.lkpitem_no and

class.class_no REF classmember.member_no. The only issue we need to take care of is to

not allow recursive class->classmember->class. Additionally we also can potentially have

<class|member>type_no referring to a wrong lkpitem_no. We don’t worry too much about

the details, since we created a database side integrity check to ensure membertype_no can

only be of type class_no (Listing 12).

 12

Listing 12: Data store class member table referencing the TTLT
[classmember]
1=class_no:1;membertype_no:2;member_no:2;seq=0
2=class_no:2;membertype_no:3;member_no:3;seq=0
3=class_no:3;membertype_no:3;member_no:4;seq=0
4=class_no:4;membertype_no:4;member_no:5;seq=0
5=class_no:4;membertype_no:4;member_no:6;seq=1
6=class_no:4;membertype_no:4;member_no:7;seq=2
7=class_no:4;membertype_no:4;member_no:8;seq=3
8=class_no:4;membertype_no:5;member_no:10;seq=4
9=class_no:4;membertype_no:4;member_no:9;seq=5

If we assume the above as a true RDBMS, we can create 4 views to assist us in fetching the

details of each (Listing 13):

Listing 13: Class and member views interfacing to TTLT
CREATE VIEW lkpitemview AS
 SELECT d.lkpdef_id, lkpdef_description, i.*
 FROM lkpdef d, lkpitem i WHERE d.lkpdef_no = i.lk pdef_no;

CREATE VIEW classview AS
 SELECT c.*, l.lkpitem_id AS classtype_id
 FROM class c, lkpitemview l WHERE c.classtype_no = l.lkpitem_no;

CREATE VIEW memberview AS
 SELECT m.*,
 p.classtype_no, p.classtype_id, p.class_id AS member_id,
 l.lkpitem_id AS membertype_id
 FROM classmember m, p.classview p, lkpitemview l
 WHERE m.member_no = p.class_no AND m.membertype_ no = l.lkpitem_no;

CREATE memberownerview AS
 SELECT m.*,
 o.class_no AS owner_no, o.class_id AS owner _id,
 o.classtype_no AS ownertype_no, o.classtype _id AS ownertype_id
 FROM classmemberview m, classview o
 WHERE m.class_no = o.class_no;

Not sure how many have seen some possibilities with the above views, but we can actually

ask some questions:

• Show me all classes;

• Show me all applications;

• Show me all forms;

• Show me all menus;

• Show me the (tree of) members of class;

• Show me the (tree of) owners of class.

In future articles a bit more discussion on that. We still have not yet address EAV and where

we can implement it. If we look at the class store, Properties have all some features that is

shared between all of them. However, although separator when we use our WED shows it

contains a property Text = “-“, have tried numerous times to change it to something different,

e.g. “+”, “|”, it appears to have no effect, even if left blank. There is our first clue, it seems

 13

that Text is not shared between all classes. Lets see how we can enhance our datastore via

EAV to potentially eliminate this sparse data.

Well effectively we have already implemented an EAV model. Our OTLT that we enhanced

to make use of two tables are in effect already conforming to the EAV model. We do not

have a single table:class which have columns for App, Menu1, Menu2, Event1, Event2, etc.

We know an [App]class might have AppForm. But also we don’t know how many Menus an

[App]Form might have, or if it would actually have other MemberTypes. A single table will

mostly contain sparse data. By adding some additional overhead we will only store items that

are of meaning, no null value columns. Our table:classmember is also in effect and EAV

implementation. It will only contain records applicable to the table:class. However, we

defined above that not all Properties have meaning, e.g. Separator does not need a Text value,

but the other classes do. We can jump the gun, and say: Well it’s easy, we can extend our

classmember table to have a record, not only for members, but also for properties. Mission

accomplished! Yes that would be a solution, however my believe is that I would like as far as

possible to get all details (properties) of a class in a single row. Otherwise we end up adding

complexity since we need to pivot records into a single row. Let’s look at our datastore

format (Listing 14), since it provides us with a hint.

Listing 14: Data store format
[class]
1=classtype_no:1;class_id:HelloWorldVN;text:Hello W orld Vulcan Application;

It contains a typical ini structure

<Key>=<Value>

all stored on a single line (row). I have however sub-itemised it with

<SubKey>:<SubValue>;

We therefore have a structure

<[Sub]Key>=<Value|<<SubKey>:<SubValue>; …>>>

It does not matter what [un]used character we will use, as long as we are consistent and our

data store interface knows about it and how to interpret it. I will make use of “#” for

<Key>#<Value> separator and “!” for end of subkey value pairs. Lets implement our subkey

for sparsely filled properties called classproperty (Listing 15):

 14

Listing 15: Data store with sparsely filled properties format
[class]
1=classtype_no:1;class_id:HelloWorldVN; // Continue on next line

 classproperty:text#Hello World Vul can Application!

 nextprop#somevalue;

 class_description:Hello world appl ication in Vulcan

You probably ask why we doing this, surely we could just have text and nextprop on the same

level without the complexity of another sub-level?

Yes unfortunately I hav to agree that is the case, in a real life situation we would however not

have the flexibility of a ini interface.

Lets look at this from a database table perspective, it might make it clearer. The class table

would probably look something like:

Table 8: Database class table structure

Table:Class
Class_no Classtype_no Class_id Text Nextprop Class_description
1 1 HelloWorldVN Hello

World
Vulcan
Application

Some
value

Hello World
Application in
data-driven
application build
with Vulcan.NET

As we have stated, Text and Nextprop will potentially be sparsely filled, or for the moment be

in the unknown of class properties. And here is where a variation on the EAV model (1

record describe 1 class) comes into play (Table 9).

Table 9: Database class table structure modified for EAV

Table:Class
Class_no Classtype_no Class_id Class_description Class_property
1 1 HelloWorldVN Hello World

Application in
data-driven
application build
with Vulcan.NET

Text=Hello World Vulcan
Application;
nextprop=
Some value

Now the only work we will have to do is to somehow tell our interface layer that it contains

an EAV column named Class_property and treat each item inside the same as if they a

column of the table!!! ☺

 15

6. Summary

I hope this article gave some readers maybe an idea of how to implement those “difficult”

database design issues. We have effectively try and eliminate some of the issues of One True

Lookup Tables and showed how we can enhance the EAV model.

In the next article we will be adapting our application datastore interface accordingly. Sorry

no little application source code in this series. In the next article we will make up for that!

Till the next article: Creating a datastore agnostic interface layer

