Data-driven Programming

By
Johan Nel

A series of articles explaining the principles

Article 7: A persistent interface layer

December 2014

Table of contents

I I N I = (@ T 16 L@ ST 1
2. LET THE CODING START ..ottt ettt e et s se et sa st e ssenessenessns 1
3. CONFIGURATION DRIVER......ctiieiseesees ettt et sttt 1
4. APPLICATION DRIVERootiiiiieitieiseise sttt ettt st saneeneseene e 2
4.1 THEINTERNAL PUBLIC METHOD EXEC() .iitiioiitiiiesieseeie sttt st et e sttt e st s esnesreennenne s 3
4.2 THE HIDDEN METHOD EXEC(IAPP) ..o ettt sttt ettt et e v tesaeesaasbesnaesnesreennenne s 4
5. THE CLASSMEMBER INTERFACE LAYER ..ot 5
5.1 JHNMEMBERINTERFACE:MEMBERADD(SPARAMETER COLLECTION>) .oiviiiieiiieienieiesinneneeneeene 7
5.2 JHNMEMBERINTERFACE:MEMBERADD(SPARAMS>, KDELEGATES)...ccciirieririererieresieresesneseenennns 7
6. THE DATA-DRIVEN APPLICATION START ..o 8
7. THE DATA-DRIVEN APPLICATION FORMooiiiiiirieisieiseese st 9
8. THE DATA-DRIVEN MENU ..ottt ettt 10
9. THE DATA-DRIVEN PARAMETER COLLECTION CLASS......cccsoiireeneerieesienesienesienesee s 12
10. THE DATA-DRIVEN SETUP DICTIONARY CLASS ..ottt 14

11, SUMMARY iRt e e R e R e e R e R e e n Rt e e r e e nenreenenre s 14

Listings

LISTING 1: MODIFIED START() FUNCTION. 1..tttttttttetteeeeeeessessassasssnssnssssssneeresaeeeseesssssnsannassssssssssssssreereereeesnnnannnns 1
LISTING 2: CONFIGURATION DRIVER CLASS. ... 1eeeuttttesstteessnteeeessaeresasteessasnnesassssesnssssesnsseessnssessasseseesnssessssnessnseees 2
LISTING 3: APPLICATION DRIVER CLASS......ceetuttteeittreesssseeessteeesseeessnseeesssesessnsesesassesesnsssessnsseeeanssseesnsesesssesessses 3
LISTING 4: JHNAPPLICATIONDRIVER:EXEC() .. uvvvteiteeeestieeesitieeesieeesestee s sasamseeeesnsaeeesseeaesnsaeeesssnnaesnsseessnnnnssnsees 4
LISTING 5: START SECTION ADDED TO DIFRAMEWORK.EXE.INIveeiuvtereeiereessteeesnsneeessseessssenssnseesssssesesssseeessnseeeans 4
LISTING 6: JHNAPPLICATIONDRIVER:EXEC(IAPP)......ceeiitieeestiieessiieeesstieeeasseeeessseneesnsseeesssensssnsseessssenssssseeesassennnns 5
LISTING 7:THE CLASS MEMBER INTERFACE JHNM EMBERINTERFACEccuvtteitterestereesteeessneeeeesssesssssenesssneeesnseeens 6
LISTING 8: JHNMEMBERINTERFACEMEMBERADD(OPC).....ccitiiieiiiieeitieeesitie e s sieee e s vmemmme s ee e s nnteeeasaeeessneeeesnnaeeesnnes 7
LISTING 9: JHNMEMBERINTERFACEMEMBERADD(OPC,MEMADD)eeiutttteitieessteeeesseeeesseeeesnseenssnsseseesssneessnsneeans 8
LISTING 10: THE DATA-DRIVEN APPLICATION CLASS. .. .eeeittttestrreesaueeeesnteeeesseeessssnsasssesesassssesnssssesnseeessnsseessssneessnes 9
LISTING 11: THE DATA-DRIVEN APPLICATION FORM.utttteiutteesiuteeestereesanseessnsseeasssnssasssssesssseessssesssnseseesnsseessnssees 10
LISTING 12: THE DATA-DRIVEN MENU CLASSceiututeesutereesnteresastereasseeeesassesaassesssassesesnseseesnsseessssesassseeesssessnnes 11
LISTING 13: THE DATA-DRIVEN MENU ITEM CLASS.utttetututeestteeessereeesseeesaseeeeansnnasassesessssseesassesssnssseesnsesessnsseens 11
LISTING 14: THE DATA-DRIVEN TOOLSTRIP SEPARATOR CLASS......uuteiiutreeatrreesiseeesssereesssesesassnessssseessssesesnsseeesnses 12
LISTING 15: THE DATA-DRIVEN PARAMETER COLLECTION CLASS .. .ceiuttttesutreeesneeeesssteeesssseeesassessnsesssnsseessssesesnsees 13

1. Introduction

In article 5 we have created our first working dateven application. In article 6 we looked
at making full use of One (True) Lookup Table, bytending it a bit to suite our needs. We
also looked at Entity Attribute Value and how weulcbkeep the concept of 1 record per
feature with a text column holding Key=Value[;Keyalde|,...]] lists of sparse data. In this
article 1 will hopefully excite you with another wWong example (with source code) based on
the principle. It will also be the last articleathwe will be using our acquired jhniniFile
exclusively. We have discovered a new technol®PEMS) with an enhanced interface
compared to NotePad. To the point, we need to dp wo much coding to achieve a
solution. We will try to aim for classes that a@m anything in (almost always) less than 50

lines of cod® Yes! you heard, sorry read correctly, 50 linesaife per class.

2. Let the coding start

You probably guessed right. We need a Start fanctlifference is that we need some driver
and cannot do the typical Application.Run(oForndl); framework don’t know it. Let’s get

started and modify our Start function (Listing 1):

Listing 1: Modified Start() function

[STAThreadAttribute];

FUNCTION Start(asCmdLine AS STRING[]) AS INT
LOCAL nExitCode AS INT

System.Windows.Forms.Application.EnableVisualStyle s()

System.Windows.Forms.Application.DoEvents()

jhnFT.Utils.Config.jhnConfigurationDriver.Inst:Exec 0
RETURN nExitCode

We have a new feature and it seems very simildrote we will do a Console application.

Off we go to configure our Application Framework.

3. Configuration driver
There are a couple of things we want our Framewwmdo:

1. We don’t want surprises happening, e.g. havingremthan 1 instance of our
configuration. Singleton to the rescue;

2. We don't want any interference to our configunmat except if we allow it.
INTERNAL and SEALED;

3. Our configuration should only be executed orneegpplication (Framework) session,
since it might change the behaviour of active evamid they might not behave nicely
afterwards. STATIC LOCAL to the rescue.

Our configuration driver looks pretty cool. We aled less than 50 lines of code (to be used
somewhere el§e). Basically the configuration driver is an enitmyo the jhnFT.Utils.Config
namespace. Only 1 instance can be active percafiphh and it has only an Exec() method

that is public (Listing 2) that execute a Singlebtess jhnApplicationDriver:Exec() method .

Listing 2: Configuration driver class
BEGIN NAMESPACE jhnFT.Utils.Config
SEALED CLASS jhnConfigurationDriver
STATIC HIDDEN _inst AS jhnConfigurationDriver
STATIC CONSTRUCTOR()
_inst := jhnConfigurationDriver{}
RETURN

HIDDEN CONSTRUCTOR()
SUPER()
RETURN

STATIC PROPERTY Inst AS jhnConfigurationDriver
GET
RETURN _inst
END GET
END PROPERTY

METHOD Exec() AS VOID
jhnApplicationDriver.Inst:Exec()
RETURN

END CLASS
END NAMESPACE

We are getting closer to presenting our applicatiom to the ApplicationDriver class.

4. Application driver

Well | probably do not have to tell what this i3 about. We need to somehow get the
framework to know how to display our applicatioin the configuration driver classs we
called jhnApplicationDriver.Inst:Exec(). We wikkier on in the series build the configuration
driver inside a ddConfiguration.dll assembly, togetwith the other ddFramework classes
inside a single namespace. All classes will béenddfas mostly singleton and internal. We
don’'t want it to be called by some careless prognarg. Our ApplicationDriver have a
similar structure to the ConfigurationDriver clasH. is internal and sealed with static and
hidden constructors and a static Inst propertyctess the instance of the class running. The
only difference is however that it contains two Ejenethods. One Exec() method declared
as internal public so that our ConfigurationDrivan execute it, and one hidden that accept
an integer parameter very cryptically defined agpAor no obvious reason (Listing 3). We

will look at the Exec methods in more detail.

Listing 3: Application driver class
#using jhnFT.Utils.Config

#using System.Windows.Forms
#using System.Collections.Generic

BEGIN NAMESPACE jhnFT.Utils.Config

INTERNAL SEALED CLASS jhnApplicationDriver
STATIC HIDDEN _inst AS jhnApplicationDriver

STATIC CONSTRUCTOR()
_inst := jhnApplicationDriver{}
RETURN

HIDDEN CONSTRUCTOR()
SUPER()
SELF:InitializeAppDriver()

RETURN

STATIC PROPERTY Inst AS jhnApplicationDriver
GET
RETURN _inst
END GET
END PROPERTY

HIDDEN METHOD InitializeAppDriver() AS VOID
1 SELF:Exec() //Test if only 1 Exec() can be requ ested
RETURN

METHOD Exec() AS VOID
STATIC LOCAL iCount := 0 AS INT
LOCAL kvp AS KeyValuePair<INT, STRING>

IF iCount++ = 0 // Can only be executed 1 time p er application
kvp := (KeyValuePair<INT, STRING>)SetupDict.Ins t:PropertyGet("Start")
IF kvp:Key >0
SELF:Exec(kvp:Key)
ELSE
MessageBox.Show(e"No start application specifi ed\n\nini file\t: " +;
SetupDict.Inst:PropertyGet("Frameworkini*):To String() + ;
e"\nSection\t: [system]\nltem\t: cla ss")
ENDIF
ELSE
MessageBox.Show(;
"Only one instance of the application driver is all owed per active session!", ;
SELF:GetType():ToString(),MessageBoxButtons.OK , MessageBoxIcon.Stop)
ENDIF
RETURN

HIDDEN METHOD Exec(iApp AS INT) AS VOID
LOCAL oClIsP, oLkplIP AS jhnParameterCollection
LOCAL ddSD AS SetupDict
ddSD := SetupDict.Inst
IF (oClsP := ddSD:ClassPropertyGet(iApp)) = NULL

MessageBox.Show(

"Class : " + iApp:ToString() + " does not exist!", SELF:GetType():ToString())
ELSEIF (oLkpIP := ddSD:LkpltemGet(oClsP:GetInt(" classtype_no"))) = NULL
MessageBox.Show(e"Class_no\t:" + iApp:ToString() + " class type does not exist!",;
SELF:GetType():ToString())
ELSEIF oLkplP:GetParameter("lkpitem_id") == "app lication"
oClsP:AddParameter(“classtype_id", oLkpIP:GetPa rameter("lkpitem_id"))
BEGIN SCOPE

LOCAL o AS OBJECT
0 := ddMemberinterface.Inst:MemberAdd(oClsP)

IF 0:GetType():IsSubclassOf(typeof(System.Wind ows.Forms.Form))
Application.Run((Form)o)
ENDIF
END SCOPE
ELSE
MessageBox.Show("Start class can only be of cla sstype application”, ;
SELF:GetType():ToString(), MessageBoxButtons.OK, Me ssageBoxIcon.Stop)
ENDIF
RETURN
END CLASS

END NAMESPACE

4.1 The internal public method Exec()

Two things are (immediately) obvious from the methubisting 4). It contains a STATIC

LOCAL iCount variable with an initial value of 0.t also contains a call to a (again)

Singleton class jhnSetupDict getting some propedjled “Start” that is stored in a
KeyValuePair object. More later about the SetupRlass. It then passes the kvp:Key to

Exec(iApp). The applicable code is highlightedine the core of the method.

Listing 4: jhnApplicationDriver:Exec()
METHOD Exec() AS VOID
STATIC LOCAL iCount := 0 AS INT
LOCAL kvp AS KeyValuePair<INT, STRING>
IF iCount++ =0 // Can only be executed 1 time per application

kvp := (KeyValuePair<INT, STRING>) jhnSetupDict.Inst:PropertyGet("Start")
IF kvp:Key >0
SELF: Exec(kvp:Key)
ELSE
MessageBox.Show(e"No start application specifi ed\n\nini file\t: " + ;
SetupDict.Inst:PropertyGet("Frameworklni"):To String() + ;
e"\nSection\t: [start]\nltem\t: clas s=<value>")
ENDIF
ELSE
MessageBox.Show(;
"Only one instance of the application driver is all owed per active session!", ;
SELF:GetType():ToString(),MessageBoxButtons.OK , MessageBoxIcon.Stop)
ENDIF
RETURN

We somehow need to tell our Application driver wehéo start. Where would be a better
place than in our application ini file? It justese logic that our application will be of a class
object. We need to however tell it which classntantiate. Inspecting our ini file, we find

that we define classes in a section class and licakpy each item has a uniqgue number

class_n® The obvious is listed in Listing 5.

Listing 5: Start section added to ddFramework.exe.in

[start]
class=1

It appears that behind the scenes our jhnSetupl#Ess is able to get this detail for us and
that it is returned in a KeyValuePair<INT, STRIN@ich seems to tied up with class_no

(INT) and class (STRING). The INT appears to bgspd on to Exec(iApp).

4.2 The hidden method Exec(iApp)

We call on Columbo to help solve the case (Lisihg Our application driver has effectively
get us to a stage where we can start what seerns the same as the normal start of an
application. We now know the identifier (iIApp) ofir application and it is time to ask it to
get into action. Again we don’t want our applicatito be started again while it is running,
we might burn out the starter motor. A STATIC i@bseems to be the solution again. It
seems we need to get some parameters that desaribpplication and we call it a parameter
collection. The jhnSetupDict seems to be quitéeser class, not only can it retrieve a key
value pair, put it can also supply class propeftidassPropertyGet(iApp)] and lookup items

[LkpltemGet(classtype _no)]. Looking at our iniefilve can hence make the assumption that

it supply a single point to request details from ithi, but also some additional key value pairs
(Environment variables). In our previous examp&l®WorldVN we had instances of the ini

all over the show and it seems jhnSetupDict endapesiit nicely in one place. We also had
calls to a memberinterface in our previous sampj#ieation, and again it seems it still exists
((hnMemberinterface). The parameters passed hawesk a bit different, but seems to be

available via the parameter collections (jhnParan@allection).

Listing 6: jhnApplicationDriver:Exec(iApp)

HIDDEN METHOD Exec(iApp AS INT) AS VOID
STATIC LOCAL iCount := 0 AS INT
LOCAL oClIsP, oLkpIP AS jhnParameterCollection
LOCAL ddSD AS jhnSetupDict

IF iCount++ =0
ddSD := jhnSetupDict.Inst
IF (oClIsP := ddSD: ClassPropertyGet(iApp)) = NULL
MessageBox.Show("Class : " + iApp:ToString() + does not exist!", ;
SELF:GetType():ToString())
ELSEIF (oLkpIP := ddSD: LkpltemGet(oClsP:GetInt("classtype_no"))) = NULL
MessageBox.Show(e"Class_no\t: " + iApp:ToString() + " class type does not exist!", ;
SELF:GetType():ToString())
ELSEIF oLkplIP: GetParameter("lkpitem_id") == "application”
BEGIN SCOPE
LOCAL o AS OBJECT
0:= jhnMemberinterface.lnst:MemberAdd(oClsP)
IF 0:GetType():IsSubclassOf(typeof(Form))
TRY

Application.Run((Form)o)
CATCH ex AS Exception
MessageBox.Show(ex:Message, SELF:GetType():To String() + ":Exec(" + ;
iApp:ToString() +")")

END TRY
ENDIF
END SCOPE
ELSE
MessageBox.Show("Start class can only be of clas stype application”, ;
SELF:GetType():ToString(), ;
MessageBoxButtons.OK, MessageBoxIcon.Stop)
ENDIF
ELSE
MessageBox.Show("Only one application driver is a llowed per active session!", ;
SELF:GetType():ToString(), ;
System.Windows.Forms.MessageBoxButtons.OK,
System.Windows.Forms.MessageBoxIcon.Stop)
ENDIF
RETURN

Unfortunately it seems we were not able to adhereour 50 lines per class with the
Application Driver. On average we still ok though.lIt is time to look at this new member

interface tool and if it can help us to get outrage lines of code back to below 50.

5. The class member interface layer

It appears our member interface class still havaessimilarities to the previous example
published. Delegates are still used and it stideuu the exact same syntax
MemAdd(<OBJECT>). A singleton class is still theler (or is it flavour) of the day. A bit

of replicated code though, but we managing belowif€s per class averages, so we not

going to split hairs or in software terms removemeempty lines... At least we able to show

the whole class on one printed page (Listing 7}hweven a bit of space to write on and do
something for the environment, for those like meovpinefer to read black on white in hard
copy format. Or allow us to write some uselessrmiation. | had a big slogan on my wall
when | started working:lf you have nothing to, do don’t do it here”Or in (data-driven)
programming terms:Ilf you don’'t have to programme, don’t do it” Weather seems quite

good for camping and fishing...

Listing 7:The class member interface: jhnMemberfate

#using jhnFT.Utils.Config
#using System.Reflection

DELEGATE MemAdd(o AS OBJECT) AS VOID
BEGIN NAMESPACE jhnFT.Utils.Config

SEALED CLASS jhnMemberinterface
STATIC HIDDEN _inst AS jhnMemberlinterface

STATIC CONSTRUCTOR()
_inst := jhnMemberinterface{}
RETURN

HIDDEN CONSTRUCTOR()
SUPER()
RETURN

STATIC PROPERTY Inst AS jhnMemberlinterface
GET
RETURN _inst
END GET
END PROPERTY

METHOD MemberAdd(oPC AS jhnParameterCollection) A S OBJECT
LOCAL 0Ass AS Assembly
LOCAL o AS OBJECT
IF oPC:HasKey("defaultclass")
0Ass := Assembly.GetAssembly(SELF:GetType())
BEGIN SCOPE
LOCAL ctor AS Constructorinfo
LOCAL typ AS Type
typ := 0Ass:GetType(oPC:GetParameter("defaultc lass"))
ctor := typ:GetConstructor(<Type>{oPC:GetType()
0 := ctor:Invoke(<OBJECT>{oPC})
END SCOPE
ELSE
oPC:DisplayMembers("Missing default class")
ENDIF
RETURN o

METHOD MemberAdd(oPC AS jhnParameterCollection, m emadd AS MemAdd) AS VOID
LOCAL o AS OBJECT
0 := SELF:MemberAdd(oPC)
memadd(o)

RETURN

END CLASS
END NAMESPACE

Well after all that, we even have some empty spadél on this page, and | thought | am
going to get away with it. We will look at the al@aded MemberAdd methods of the class,
since the ApplicationDriver called the single paesen version. A slight variation to what we
had in article 5. But it seems it is still receigisome properties describing a member class.
However it returns an object and does not makeotisedelegate. Will have to stop writing
now, the empty space is filled. On to our MembetAdethod receiving one parameter and

returning an object.

5.1 jhnMemberinterface:MemberAdd(<parameter collection>)

| we look at the MemberAdd method of Article 5, e clear observation is that each time
we add another type of member, we have work toodmut ever increasing list handled with
an IF statement:

IF <member>:StartsWith(“<membertype>") // The known
[EI'_”SEIF <member>:StartsWith(“<membertype>")] // The unknown

E'L';SE /I Even deeper into the unknown
/I Don't know what to do
ENDIF

In our first article the statement was made tha&t ointhe fundamental issues with Functional
Decomposition is that very seldom all the requireteecan be gathered before system
development. Our IF statement above proofs thetpdlVe need to find a way of addressing
the known and unknown requirements. In Clipper, &@ Vulcan we have macro-compiled
codeblocks, which is a very under utilised featuviore of that in a future article, however in
Visual Objects, we were able to Createlnstance&)d9, SendClass(), etc. We had a method
to speed up the macro-compiled codeblock interfdoe.NET we have similar capabilities
via the namespace System.Reflection. What we isedcreate a string based logic around
it. Codeblocks give and still can provide us tbegability at a cost of execution speed. VO
gave us an improved interface, and .NET althoughetadifferently the same [enhanced]
features. Our MemberAdd was changed accordingty iamppears we are able to create
objects from known and unknown classes, providey implement a constructor overload

that excepts our magical jhnParameterCollectioeaibjListing 8):

Listing 8: jhnMemberinterface:MemberAdd(oPC)
METHOD MemberAddEPC AS jhnParameterCollection)AS OBJECT
LOCAL o AS OBJECT
IF oPC:HasKey("defaultclass")
BEGIN SCOPE
LOCAL o0Ass AS Assembly
LOCAL ctor AS Constructorinfo
LOCAL typ AS Type
0Ass = Assembly.GetAssembly(SELF:GetType())
typ := 0Ass:GetType(oPC:GetParameter("defaultclass")
ctor = typ:GetConstructor(<Type>{oPC:GetType()})
0 := ctor:Invoke(<OBJECT>{oPC})
END SCOPE
ELSE
oPC:DisplayMembers("Default class missing - " + ;
SELF:GetType():ToString() + “:MemberAdd(<oPC>)")

ENDIF
RETURN o

5.2 jhnMemberinterface:MemberAdd(<params>, <delegate>)

Our MemberAdd method with an additional parametex non-event. All it does is accept an

object and pass it into the delegate property menfladting 9).

Listing 9: jhnMemberinterface:MemberAdd(oPC, memadd)

METHOD MemberAdd(oPC AS jhnParameterCollection, mem add AS MemAdd) AS VOID
LOCAL o AS OBJECT
0 := SELF:MemberAdd(oPC)
memadd(o)

RETURN

It appears we have mission accomplished. FromAppticationDriver it seems we have an

application going the Start of a normal Form aggilan. Let’s look at our application.

6. The data-driven application start

The ApplicationDriver in essence only try and de@hat we supplied in our start section of
the ini file is in fact an application and pass #a¢ue (iApp) to our Memberinterface. Our
Memberinterface try and create an object from te&awtclass property and if successful
return it to the ApplicationDriver. It does notally know what it will create, but trust the
calling object to know why it requested the objedte ApplicationDriver check if it is an

object of type form and would in that case beh#ead normal Start function. It will execute
an Application.Run(oForm), which again will handlentil the form is closed, or somewhere
in the chain of member objects or events of oF@mApplication.Exit() is performed. Since
we the all knowing of the known and unknown (no putended), we unknowingly know that
the ApplicationDriver will receive a jhnApplicatioobject an therefore exit the application.
The Memberinterface object will create an objectjlmiApplication. Lets look at the

application object (Listing 10).

Our application class have some funny propertiéd; Name and Text. If we remember
from our article 5 application that should [b]riagChr(7) in our minds. It resembles the
AppForm class in that application, with the additiof an ID field. Not surprising but the
constructor calls an InitializeApp method passing ParameterCollection. It seems except
for our Memberinterface class, the SetupDict clals® do some important work as it is
visible inside this class too. A new method thatdid not see before seems to be part of this
nifty class, ClassMemberGet. Well seems we mightehplenty of members, since the
InitializeApp executes a loop for each member. odldy looping through the members, but
our Memberinterface seems to be quite an overwodkgect, luckily sharing the workload

with SetupDict.

But hang on, we have not displayed our Applicaty@ and here we wander off to tell

Memberinterface again that we have some membedrss dgetting confusing, we have not

even presented our application and it seem thecapiph is distracted:‘Hey! | want a form

object that | can run, anytime soon you will giveime?”

Listing 10: The data-driven application class

#using jhnFT.Utils.Config
#using System.Windows.Forms

SEALED CLASS jhnApplication
PROTECT nID AS INT
PROTECT Name AS STRING
PROTECT Text AS STRING

CONSTRUCTOR(0PC AS jhnParameterCollection)
SUPER()
SELF:InitializeApp(oPC)

RETURN

HIDDEN METHOD InitializeApp(oPC AS jhnParameterCol lection) AS VOID
SELF:nID := oPC:Getlnt("class_no")
SELF:Name := oPC:GetParameter("class_id")
SELF:Text := oPC:GetParameter(“text")
BEGIN SCOPE
LOCAL aMbr AS jhnParameterCollection]]
aMbr := jhnSetupDict.Inst:ClassMemberGet(SELF:nl D)
FOR LOCAL mbr := 0 AS INT UPTO aMbr:Length - 1
LOCAL o AS OBJECT
TRY

Application.Run((Form)(o := jhnMemberinterface .Inst:MemberAdd(aMbr[mbr])))

CATCH ex AS Exception
aMbr[mbr]:DisplayMembers(SELF:GetType():ToStri ng() + ":InitializeApp(<oPC>)")
MessageBox.Show(ex:Message, SELF:GetType():ToS tring())

END TRY

NEXT
END SCOPE
RETURN
END CLASS

Enough said, we know that application will createobject of type AppForm. Let’s look at

our application form and stop worrying when it vk returned by or Memberinterface.

7. The data-driven application form

Finally we getting to our application form aftercaib 250 lines of code. That was damn hard
work and hope it will be a lot less effort from aesnwards. Comparing the code from our
application class (Listing 10) to that in Listing,lit looks very similar, except that a new
method was created (ControlsAdd) that by some @afso ask for some members and pass
it onto our Memberinterface. Only difference isatthit tells Memberinterface to use

ControlAdd to associate the members with AppForm.

We can clearly see that our data-driven applicafiamework is building up a pattern. We
consistently seems to be starting to use the sameept over and over again. Yes the speed
of execution is getting substantially slower, hoemvif we compare it to requesting a
webpage it seems to be still a lot faster. | ame fwr users will not even detect the speed

penalty.

Listing 11: The data-driven application form

#using System.Windows.Forms
#using jhnFT.Utils.Config

CLASS jhnAppForm INHERIT Form
PROTECT nID AS INT

CONSTRUCTOR(0PC AS jhnParameterCollection)
SUPER()
SELF:InitializeForm(oPC)

RETURN

METHOD InitializeForm(oPC AS jhnParameterCollectio n) AS VOID
SELF:nID := oPC:GetInt("member_no")
SELF:Name := oPC:GetParameter("member_id")
SELF:Text := oPC:GetParameter("text")
SELF:SuspendLayout()
SELF:ControlsAdd()
SELF:ResumeLayout()
RETURN

METHOD ControlsAdd() AS VOID
LOCAL aMbr AS jhnParameterCollection[]
aMbr := jhnSetupDict.Inst:ClassMemberGet(SELF:nID)
BEGIN SCOPE
LOCAL delCtrlAdd AS MemAdd
delCtrlAdd := MemAdd{SELF, @ControlAdd()}
FOR LOCAL mbr := 0 AS INT UPTO aMbr:Length - 1
jhnMemberinterface.lnst:MemberAdd(aMbr[mbr], de ICtrIAdd)
NEXT
END SCOPE
RETURN

METHOD ControlAdd(o AS OBJECT) AS VOID
SELF:Controls:Add((Control)o)
RETURN

END CLASS

It is time to test our statement that we busy ugda pattern of how we create and interface
to presentation objects of new classes in the knamthunknown. Our ini file tells us that

AppForm contains a Menu that has members of Memulte

8. The data-driven menu

We can see if we can use our AppForm class and thizhassistance of our favourite
developer tool (NotePad) use a bit of copy, pastkraplace to get a menu. Miraculously
with a little bit of finetuning, we end up with aemuclass (Listing 12) and a menu item class
(Listing 13). It is just another presentation lay®d we have discovered in our previous
articles that on an abstract layer all presentdtiger classes have similar fundamentals. The
changes made to the MenuClass (jhnMenu) and MenGless (jhnMenultem) are
highlighted inblue 1 think we can give self another pat on the $theny we have just created

a menu platform for (almost) no additional worktie known and unknown futuge So
much for movies about back to the future. We hgradbed the future and made it happen

today!

All we need to do now is explain what we have dtmend up with this marvellous piece of

art.

10

Listing 12: The data-driven menu class

#using System.Windows.Forms
#using jhnFT.Utils.Config

CLASS jhnMenu INHERIT MenuStrip
HIDDEN nID AS INT

CONSTRUCTOR(p AS jhnParameterCollection)
SUPER()
SELF:nID := p:GetInt("member_no")
SELF:Name := p:GetParameter("member_id")
SELF:Text := p:GetParameter("text")
SELF:Initialize Menu()

RETURN

METHOD Initialize Menu() AS VOID
LOCAL delMIAdd AS MemAdd
LOCAL aMbr AS jhnParameterCollection[]
delMIAdd := MemAdd{SELF, @ MenultemAdd ()}
aMbr := jhnSetupDict.Inst:ClassMemberGet(SELF:nID)
FOR LOCAL mbr := 0 AS INT UPTO aMbr:Length - 1
jhnMemberinterface.Inst:MemberAdd(aMbr[mbr], del MIAdd)
NEXT
RETURN

METHOD MenultemAdd (o AS OBJECT) AS VOID
IF 0:GetType():IsSubclassOf(typeof(ToolStripltem))
SELF:ltems:Add((ToolStripltem)o)
ENDIF
RETURN

END CLASS

Listing 13: The data-driven menu item class

#using System.Windows.Forms
#using jhnFT.Utils.Config

CLASS jhn Menultem INHERIT ToolStripMenultem
HIDDEN nID AS INT

CONSTRUCTOR(p AS jhnParameterCollection)
SUPER()
SELF:nID := p:Getint("member_no")
SELF:Name := p:GetParameter("member_id")
SELF:Text := p:GetParameter("text")
SELF:Initialize Menultem ()

RETURN

METHOD InitializeMenultem() AS VOID
LOCAL delMIAdd AS MemAdd
LOCAL aMbr AS jhnParameterCollection[]
delMIAdd := MemAdd{SELF, @ MenultemProcess ()}
aMbr := jhnSetupDict.Inst:ClassMemberGet(SELF:nID)
FOR LOCAL mbr := 0 AS INT UPTO aMbr:Length - 1
jhnMemberinterface.lnst:MemberAdd(aMbr[mbr], del MIAdd)
NEXT
RETURN

HIDDEN METHOD MenultemProcess (o AS OBJECT) AS VOID
IF 0:GetType():IsSubclassOf(typeof(ToolStripltem))
SELF:MenultemAdd((ToolStripltem)o)
ENDIF
RETURN

HIDDEN METHOD MenultemAdd(o AS ToolStripltem) AS V OID
IF 0:GetType():IsSubclassOf(typeof(ToolStripMenult em)) && ;
I((ToolStripMenultem)o):HasDropDown
0:Click +=EventHandler{SELF, @MenultemClick()}

ENDIF
SELF:DropDown:ltems:Add(0)
RETURN
HIDDEN METHOD MenultemClick(o AS OBJECT, e AS Even tArgs) AS VOID
MessageBox.Show(((ToolStripMenultem)o): Text:Repla ce("&", "))
RETURN
HIDDEN METHOD MenuClose(o AS OBJECT, e AS EventArg s) AS VOID
MessageBox.Show("Thank you for using the applicat ion"+ ;

“\nHope to see you soon again\n\n" +;
SELF:Text:Replace("&", "))
Application.Exit()
RETURN

END CLASS

11

WOW, that was some hard work. We in essence clodaoge ControlAdd on AppForm to

MenultemAdd. It did take some thinking, since eéems there are different ways how our
Menultems can behave. On MenuClass we add itenmteitos, and Menultems that are
members of other Menultems is added to DropDowmste If this Menultem added does not

contain other members in its DropDown, we assoa@dienuClickEvent to it.

Lets see if our copy, paste, replace and deleterthes holding up to a data-driven

SeparatorClass (Listing 14).

Listing 14: The data-driven toolstrip separator sfa
#using System.Windows.Forms

CLASS jhnToolStripSeparator INHERIT ToolStripSepara tor
HIDDEN nID AS INT

CONSTRUCTOR(p AS jhnParameterCollection)
SUPER()
SELF:nID := p:Getlnt("classmember_no")
SELF:Name := p:GetParameter("class_id")
RETURN

END CLASS

And with a legal hat on, | will end this witfyour honour, with that | conclude my case that
the functional decomposition methodology is drogriime software development industry in

their own information pollution”

There are two classes that we did not addressbygtwe made reference to them on

numerous occasions: ParameterCollection and SettipDi

9. The data-driven parameter collection class

The jhnParameterCollection class IS a wrapper aroun
System.Collections.Specialized.NameValueCollectioe probably could have used a
simple SortedList<STRING, STRING>, however for fiduwise the NameValueCollection
was chosen. It works on a very similar principte SortedList, however when it finds a
duplicate key it appends the value to the Valua @a®mma separated string and does not
throw an exception, hence the ValueCollection pHrtthe classname. The class was
enhanced a bit to extend the Get() method to imclGetint(), GetWord(), GetDWord(),
GetLong(), GetReal4(), GetReal8(), GetDecimal() @atiBoolean().

It was also enhanced to be passed an EAV stringpargk it into KeyValue pairs that are
added to the Collection. For debugging purposBssplayMember() method was added to
show all the Key and ValueCollections associatetth wi And a HasKey() to see if a certain

key already exists. The Set() method was alsopsutated by a Put() method with the same

12

parameters to allow the “old” value to be returnéexcluded all the Get<Type>() methods

in the article to save on paper (Listing 15).

Listing 15: The data-driven parameter collectioass

#using System
#using System.Windows.Forms

CLASS jhnParameterCollection INHERIT System.Collect

CONSTRUCTOR()
SUPER()
RETURN

METHOD AddFromEAVString(cStr AS STRING) AS VOID
LOCAL sSplit, sSub AS STRING]]
LOCAL nCnt AS INT
sSplit := cStr:Split(";":ToCharArray(), StringSpl
FOR nCnt := 0 UPTO sSplit:Length - 1
IF sSplit[nCnt]:Contains("=")
sSub := sSplit(nCnt]:Split("=":ToCharArray())
TRY
SELF:Add(sSub[0]: ToLower(), ;

ions.Specialized.NameValueCollection

itOptions.RemoveEmptyEntries)

sSub[1]:Replace('eq", "="):Replace(“sc, *;"))

CATCH oEx AS Exception
MessageBox.Show(cStr + “(* + nCnt:ToString() +

")" + e"\n" + oEx:Message, ;

SELF:GetType():ToString() + “:AddFromEAVString(<str ing>)")

SELF:DisplayMembers(SELF:GetType():ToString()

END TRY
ENDIF
NEXT
RETURN

METHOD Getint(strName AS STRING) AS INT
LOCAL nRet AS INT
nRet := Int16.Parse(SELF:Get(strName))
RETURN nRet

METHOD GetBoolean(strName AS STRING) AS LOGIC
LOCAL IBoolean AS LOGIC
LOCAL strRet := SELF:Get(strName):Replace(" ", "™
IF strRet:Length > 0
IBoolean :="_t _true_y yes_1_ ":Contains("_"+s
ENDIF
RETURN IBoolean

METHOD HasKey(cKey AS STRING) AS LOGIC
RETURN Array.IndexOf(SELF:AllKeys, cKey) >= 0

METHOD Put(strName AS STRING, strVal AS STRING) AS
LOCAL sOld AS STRING
strName := strName:ToLower()
sOId := SELF:Get(strName)
IF sOld = NULL
sOld : ="
ENDIF
SELF:Set(strName, strVal)
RETURN sOld

METHOD DisplayMembers() AS VOID
SELF:DisplayMembers(ProcName(1) + "(" + ProcLine(
RETURN

METHOD DisplayMembers(cTxt AS STRING) AS VOID
LOCAL cStr AS STRING
LOCAL nitem AS INT
cStr:=""
FOR nltem := 0 TO SELF:Count - 1
cStr += SELF:GetKey(nltem) + ™" + SELF:Get(nlte
NEXT
MessageBox.Show(cStr, cTxt)
RETURN

END CLASS

+ “:AddFromEAVString(<string>)")

) AS STRING
trRet+"_")
STRING

1):ToString() +")")

m) + e"\n"

13

10. The data-driven setup dictionary class

| am not going into all the details of this claggs it will change a bit later on in the seriés.
will basically highlight the important parts fromdata-driven perspective. The SetupDict is
in principle a class that is used as a “global’restproperty collection, call it gloabal
application vars container of what we need to run application(s). Firstly, it setup some
properties, e.g. ExeName, StartupPath, etc and lavmethod for accessing them

PropertyGet().

It also reads our ini file and store it in struesito enable fast retrieval of information e.g
LkpltemGet(), ClassPropertyGet() and ClassMembdjGelt will contain some delegates

that we can use later on in our application, to@imuaformation at the moment.

| conclude: “Data-driven applications are a fun vilywhich to develop software”. | hope
you enjoyed the reading and that it gave you saleas that can be implemented in your own

environment.

11. Summary

We have created a framework of classes that caaused over and over again in a consistent
way. It was based on the known, with some antimpaof what are still in the unknown.

Happy reading till the next article!

14

