
Data-driven Programming

By

Johan Nel

A series of articles explaining the principles

Article 7: A persistent interface layer

December 2014

 i

Table of contents

1. INTRODUCTION ..1

2. LET THE CODING START ...1

3. CONFIGURATION DRIVER...1

4. APPLICATION DRIVER ...2

4.1 THE INTERNAL PUBLIC METHOD EXEC() ...3

4.2 THE HIDDEN METHOD EXEC(IAPP) ..4

5. THE CLASS MEMBER INTERFACE LAYER...5

5.1 JHNMEMBERINTERFACE:MEMBERADD(<PARAMETER COLLECTION>)7

5.2 JHNMEMBERINTERFACE:MEMBERADD(<PARAMS>, <DELEGATE>)..7

6. THE DATA-DRIVEN APPLICATION START ...8

7. THE DATA-DRIVEN APPLICATION FORM ..9

8. THE DATA-DRIVEN MENU ...10

9. THE DATA-DRIVEN PARAMETER COLLECTION CLASS..12

10. THE DATA-DRIVEN SETUP DICTIONARY CLASS ...14

 ii

11. SUMMARY...14

Listings

LISTING 1: MODIFIED START() FUNCTION... 1

LISTING 2: CONFIGURATION DRIVER CLASS.. 2

LISTING 3: APPLICATION DRIVER CLASS... 3

LISTING 4: JHNAPPLICATIONDRIVER:EXEC() .. 4

LISTING 5: START SECTION ADDED TO DDFRAMEWORK.EXE.INI ... 4

LISTING 6: JHNAPPLICATIONDRIVER:EXEC(IAPP)... 5

LISTING 7:THE CLASS MEMBER INTERFACE: JHNMEMBERINTERFACE.. 6

LISTING 8: JHNMEMBERINTERFACE:MEMBERADD(OPC)... 7

LISTING 9: JHNMEMBERINTERFACE:MEMBERADD(OPC, MEMADD) .. 8

LISTING 10: THE DATA-DRIVEN APPLICATION CLASS.. 9

LISTING 11: THE DATA-DRIVEN APPLICATION FORM... 10

LISTING 12: THE DATA-DRIVEN MENU CLASS... 11

LISTING 13: THE DATA-DRIVEN MENU ITEM CLASS... 11

LISTING 14: THE DATA-DRIVEN TOOLSTRIP SEPARATOR CLASS... 12

LISTING 15: THE DATA-DRIVEN PARAMETER COLLECTION CLASS... 13

 1

1. Introduction

In article 5 we have created our first working data-driven application. In article 6 we looked

at making full use of One (True) Lookup Table, but extending it a bit to suite our needs. We

also looked at Entity Attribute Value and how we could keep the concept of 1 record per

feature with a text column holding Key=Value[;Key=Value[,…]] lists of sparse data. In this

article I will hopefully excite you with another working example (with source code) based on

the principle. It will also be the last article that we will be using our acquired jhnIniFile

exclusively. We have discovered a new technology (RDBMS) with an enhanced interface

compared to NotePad. To the point, we need to do way too much coding to achieve a

solution. We will try to aim for classes that can do anything in (almost always) less than 50

lines of code☺ Yes! you heard, sorry read correctly, 50 lines of code per class.

2. Let the coding start

You probably guessed right. We need a Start function, difference is that we need some driver

and cannot do the typical Application.Run(oForm1), our framework don’t know it. Let’s get

started and modify our Start function (Listing 1):

Listing 1: Modified Start() function
[STAThreadAttribute];
FUNCTION Start(asCmdLine AS STRING[]) AS INT
 LOCAL nExitCode AS INT
 System.Windows.Forms.Application.EnableVisualStyle s()
 System.Windows.Forms.Application.DoEvents()
 jhnFT.Utils.Config.jhnConfigurationDriver.Inst:Exec ()
RETURN nExitCode

We have a new feature and it seems very similar to how we will do a Console application.

Off we go to configure our Application Framework.

3. Configuration driver

There are a couple of things we want our Framework to do:

1. We don’t want surprises happening, e.g. having more than 1 instance of our
configuration. Singleton to the rescue;

2. We don’t want any interference to our configuration, except if we allow it.
INTERNAL and SEALED;

 2

3. Our configuration should only be executed once per application (Framework) session,
since it might change the behaviour of active events and they might not behave nicely
afterwards. STATIC LOCAL to the rescue.

Our configuration driver looks pretty cool. We achieved less than 50 lines of code (to be used

somewhere else☺). Basically the configuration driver is an entry into the jhnFT.Utils.Config

namespace. Only 1 instance can be active per application and it has only an Exec() method

that is public (Listing 2) that execute a Singleton class jhnApplicationDriver:Exec() method .

Listing 2: Configuration driver class
BEGIN NAMESPACE jhnFT.Utils.Config
 SEALED CLASS jhnConfigurationDriver
 STATIC HIDDEN _inst AS jhnConfigurationDriver
 STATIC CONSTRUCTOR()
 _inst := jhnConfigurationDriver{}
 RETURN

 HIDDEN CONSTRUCTOR()
 SUPER()
 RETURN

 STATIC PROPERTY Inst AS jhnConfigurationDriver
 GET
 RETURN _inst
 END GET
 END PROPERTY

 METHOD Exec() AS VOID
 jhnApplicationDriver.Inst:Exec()
 RETURN

 END CLASS
END NAMESPACE

We are getting closer to presenting our application. On to the ApplicationDriver class.

4. Application driver

Well I probably do not have to tell what this is all about. We need to somehow get the

framework to know how to display our application. In the configuration driver classs we

called jhnApplicationDriver.Inst:Exec(). We will later on in the series build the configuration

driver inside a ddConfiguration.dll assembly, together with the other ddFramework classes

inside a single namespace. All classes will be defined as mostly singleton and internal. We

don’t want it to be called by some careless programming. Our ApplicationDriver have a

similar structure to the ConfigurationDriver class. It is internal and sealed with static and

hidden constructors and a static Inst property to access the instance of the class running. The

only difference is however that it contains two Exec() methods. One Exec() method declared

as internal public so that our ConfigurationDriver can execute it, and one hidden that accept

an integer parameter very cryptically defined as iApp for no obvious reason (Listing 3). We

will look at the Exec methods in more detail.

 3

Listing 3: Application driver class
#using jhnFT.Utils.Config
#using System.Windows.Forms
#using System.Collections.Generic

BEGIN NAMESPACE jhnFT.Utils.Config

 INTERNAL SEALED CLASS jhnApplicationDriver
 STATIC HIDDEN _inst AS jhnApplicationDriver

 STATIC CONSTRUCTOR()
 _inst := jhnApplicationDriver{}
 RETURN

 HIDDEN CONSTRUCTOR()
 SUPER()
 SELF:InitializeAppDriver()
 RETURN

 STATIC PROPERTY Inst AS jhnApplicationDriver
 GET
 RETURN _inst
 END GET
 END PROPERTY

 HIDDEN METHOD InitializeAppDriver() AS VOID
// SELF:Exec() //Test if only 1 Exec() can be requ ested
 RETURN

 METHOD Exec() AS VOID
 STATIC LOCAL iCount := 0 AS INT
 LOCAL kvp AS KeyValuePair<INT, STRING>
 IF iCount++ = 0 // Can only be executed 1 time p er application
 kvp := (KeyValuePair<INT, STRING>)SetupDict.Ins t:PropertyGet("Start")
 IF kvp:Key > 0
 SELF:Exec(kvp:Key)
 ELSE
 MessageBox.Show(e"No start application specifi ed\n\nIni file\t: " + ;
 SetupDict.Inst:PropertyGet("FrameworkIni"):To String() + ;
 e"\nSection\t: [system]\nItem\t: cla ss")
 ENDIF
 ELSE
 MessageBox.Show(;

"Only one instance of the application driver is all owed per active session!", ;
 SELF:GetType():ToString(),MessageBoxButtons.OK , MessageBoxIcon.Stop)
 ENDIF
 RETURN

 HIDDEN METHOD Exec(iApp AS INT) AS VOID
 LOCAL oClsP, oLkpIP AS jhnParameterCollection
 LOCAL ddSD AS SetupDict
 ddSD := SetupDict.Inst
 IF (oClsP := ddSD:ClassPropertyGet(iApp)) = NULL
 MessageBox.Show(

"Class : " + iApp:ToString() + " does not exist!", SELF:GetType():ToString())
 ELSEIF (oLkpIP := ddSD:LkpItemGet(oClsP:GetInt(" classtype_no"))) = NULL
 MessageBox.Show(e"Class_no\t:" + iApp:ToString() + " class type does not exist!",;

SELF:GetType():ToString())
 ELSEIF oLkpIP:GetParameter("lkpitem_id") == "app lication"
 oClsP:AddParameter("classtype_id", oLkpIP:GetPa rameter("lkpitem_id"))
 BEGIN SCOPE
 LOCAL o AS OBJECT
 o := ddMemberInterface.Inst:MemberAdd(oClsP)
 IF o:GetType():IsSubclassOf(typeof(System.Wind ows.Forms.Form))
 Application.Run((Form)o)
 ENDIF
 END SCOPE
 ELSE
 MessageBox.Show("Start class can only be of cla sstype application", ;

SELF:GetType():ToString(), MessageBoxButtons.OK, Me ssageBoxIcon.Stop)
 ENDIF
 RETURN

 END CLASS

END NAMESPACE

4.1 The internal public method Exec()

Two things are (immediately) obvious from the method (Listing 4). It contains a STATIC

LOCAL iCount variable with an initial value of 0. It also contains a call to a (again)

 4

Singleton class jhnSetupDict getting some property called “Start” that is stored in a

KeyValuePair object. More later about the SetupDict class. It then passes the kvp:Key to

Exec(iApp). The applicable code is highlighted in blue, the core of the method.

Listing 4: jhnApplicationDriver:Exec()
 METHOD Exec() AS VOID
 STATIC LOCAL iCount := 0 AS INT
 LOCAL kvp AS KeyValuePair<INT, STRING>
 IF iCount++ = 0 // Can only be executed 1 time per application
 kvp := (KeyValuePair<INT, STRING>) jhnSetupDict.Inst:PropertyGet("Start")
 IF kvp:Key > 0
 SELF: Exec(kvp:Key)
 ELSE
 MessageBox.Show(e"No start application specifi ed\n\nIni file\t: " + ;
 SetupDict.Inst:PropertyGet("FrameworkIni"):To String() + ;
 e"\nSection\t: [start]\nItem\t: clas s=<value>")
 ENDIF
 ELSE
 MessageBox.Show(;

"Only one instance of the application driver is all owed per active session!", ;
 SELF:GetType():ToString(),MessageBoxButtons.OK , MessageBoxIcon.Stop)
 ENDIF
 RETURN

We somehow need to tell our Application driver where to start. Where would be a better

place than in our application ini file? It just seem logic that our application will be of a class

object. We need to however tell it which class to instantiate. Inspecting our ini file, we find

that we define classes in a section class and inexplicably each item has a unique number

class_no☺ The obvious is listed in Listing 5.

Listing 5: Start section added to ddFramework.exe.ini
[start]
class=1

It appears that behind the scenes our jhnSetupDict class is able to get this detail for us and

that it is returned in a KeyValuePair<INT, STRING> which seems to tied up with class_no

(INT) and class (STRING). The INT appears to be passed on to Exec(iApp).

4.2 The hidden method Exec(iApp)

We call on Columbo to help solve the case (Listing 6). Our application driver has effectively

get us to a stage where we can start what seems to be the same as the normal start of an

application. We now know the identifier (iApp) of our application and it is time to ask it to

get into action. Again we don’t want our application to be started again while it is running,

we might burn out the starter motor. A STATIC iCount seems to be the solution again. It

seems we need to get some parameters that describe our application and we call it a parameter

collection. The jhnSetupDict seems to be quite a clever class, not only can it retrieve a key

value pair, put it can also supply class properties [ClassPropertyGet(iApp)] and lookup items

[LkpItemGet(classtype_no)]. Looking at our ini file we can hence make the assumption that

 5

it supply a single point to request details from the ini, but also some additional key value pairs

(Environment variables). In our previous example HelloWorldVN we had instances of the ini

all over the show and it seems jhnSetupDict encapsulated it nicely in one place. We also had

calls to a memberinterface in our previous sample application, and again it seems it still exists

(jhnMemberInterface). The parameters passed however look a bit different, but seems to be

available via the parameter collections (jhnParameterCollection).

Listing 6: jhnApplicationDriver:Exec(iApp)
HIDDEN METHOD Exec(iApp AS INT) AS VOID
 STATIC LOCAL iCount := 0 AS INT
 LOCAL oClsP, oLkpIP AS jhnParameterCollection
 LOCAL ddSD AS jhnSetupDict

 IF iCount++ = 0
 ddSD := jhnSetupDict.Inst
 IF (oClsP := ddSD: ClassPropertyGet(iApp)) = NULL
 MessageBox.Show("Class : " + iApp:ToString() + " does not exist!", ;

SELF:GetType():ToString())
 ELSEIF (oLkpIP := ddSD: LkpItemGet(oClsP:GetInt("classtype_no"))) = NULL
 MessageBox.Show(e"Class_no\t: " + iApp:ToString() + " class type does not exist!", ;

SELF:GetType():ToString())
 ELSEIF oLkpIP: GetParameter("lkpitem_id") == "application"
 BEGIN SCOPE
 LOCAL o AS OBJECT
 o := jhnMemberInterface.Inst:MemberAdd(oClsP)
 IF o:GetType():IsSubclassOf(typeof(Form))
 TRY
 Application.Run((Form)o)
 CATCH ex AS Exception
 MessageBox.Show(ex:Message, SELF:GetType():To String() + ":Exec(" + ;

iApp:ToString() + ")")
 END TRY
 ENDIF
 END SCOPE
 ELSE
 MessageBox.Show("Start class can only be of clas stype application", ;

SELF:GetType():ToString(), ;
 MessageBoxButtons.OK, MessageBoxIcon.Stop)
 ENDIF
 ELSE
 MessageBox.Show("Only one application driver is a llowed per active session!", ;
 SELF:GetType():ToString(), ;
 System.Windows.Forms.MessageBoxButtons.OK, ;
 System.Windows.Forms.MessageBoxIcon.Stop)
 ENDIF
RETURN

Unfortunately it seems we were not able to adhere to our 50 lines per class with the

Application Driver. On average we still ok though.☺ It is time to look at this new member

interface tool and if it can help us to get out average lines of code back to below 50.

5. The class member interface layer

It appears our member interface class still have some similarities to the previous example

published. Delegates are still used and it still uses the exact same syntax

MemAdd(<OBJECT>). A singleton class is still the order (or is it flavour) of the day. A bit

of replicated code though, but we managing below 50 lines per class averages, so we not

going to split hairs or in software terms remove some empty lines… At least we able to show

 6

the whole class on one printed page (Listing 7), with even a bit of space to write on and do

something for the environment, for those like me who prefer to read black on white in hard

copy format. Or allow us to write some useless information. I had a big slogan on my wall

when I started working: “If you have nothing to, do don’t do it here”. Or in (data-driven)

programming terms: “If you don’t have to programme, don’t do it”. Weather seems quite

good for camping and fishing…

Listing 7:The class member interface: jhnMemberInterface
#using jhnFT.Utils.Config
#using System.Reflection

DELEGATE MemAdd(o AS OBJECT) AS VOID

BEGIN NAMESPACE jhnFT.Utils.Config

 SEALED CLASS jhnMemberInterface
 STATIC HIDDEN _inst AS jhnMemberInterface

 STATIC CONSTRUCTOR()
 _inst := jhnMemberInterface{}
 RETURN

 HIDDEN CONSTRUCTOR()
 SUPER()
 RETURN

 STATIC PROPERTY Inst AS jhnMemberInterface
 GET
 RETURN _inst
 END GET
 END PROPERTY

 METHOD MemberAdd(oPC AS jhnParameterCollection) A S OBJECT
 LOCAL oAss AS Assembly
 LOCAL o AS OBJECT
 IF oPC:HasKey("defaultclass")
 oAss := Assembly.GetAssembly(SELF:GetType())
 BEGIN SCOPE
 LOCAL ctor AS ConstructorInfo
 LOCAL typ AS Type
 typ := oAss:GetType(oPC:GetParameter("defaultc lass"))
 ctor := typ:GetConstructor(<Type>{oPC:GetType()})
 o := ctor:Invoke(<OBJECT>{oPC})
 END SCOPE
 ELSE
 oPC:DisplayMembers("Missing default class")
 ENDIF
 RETURN o

 METHOD MemberAdd(oPC AS jhnParameterCollection, m emadd AS MemAdd) AS VOID
 LOCAL o AS OBJECT
 o := SELF:MemberAdd(oPC)
 memadd(o)
 RETURN

 END CLASS

END NAMESPACE

Well after all that, we even have some empty space to fill on this page, and I thought I am

going to get away with it. We will look at the overloaded MemberAdd methods of the class,

since the ApplicationDriver called the single parameter version. A slight variation to what we

had in article 5. But it seems it is still receiving some properties describing a member class.

However it returns an object and does not make use of a delegate. Will have to stop writing

now, the empty space is filled. On to our MemberAdd method receiving one parameter and

returning an object.

 7

5.1 jhnMemberInterface:MemberAdd(<parameter collection>)

I we look at the MemberAdd method of Article 5, the one clear observation is that each time

we add another type of member, we have work to do to our ever increasing list handled with

an IF statement:

IF <member>:StartsWith(“<membertype>”) // The known
…

[ELSEIF <member>:StartsWith(“<membertype>”)] // The unknown
 …
ELSE // Even deeper into the unknown
 // Don’t know what to do
ENDIF

In our first article the statement was made that one of the fundamental issues with Functional

Decomposition is that very seldom all the requirements can be gathered before system

development. Our IF statement above proofs the point. We need to find a way of addressing

the known and unknown requirements. In Clipper, VO and Vulcan we have macro-compiled

codeblocks, which is a very under utilised feature. More of that in a future article, however in

Visual Objects, we were able to CreateInstance(), Send(), SendClass(), etc. We had a method

to speed up the macro-compiled codeblock interface. In .NET we have similar capabilities

via the namespace System.Reflection. What we need is to create a string based logic around

it. Codeblocks give and still can provide us that capability at a cost of execution speed. VO

gave us an improved interface, and .NET although named differently the same [enhanced]

features. Our MemberAdd was changed accordingly and it appears we are able to create

objects from known and unknown classes, provided they implement a constructor overload

that excepts our magical jhnParameterCollection object (Listing 8):

Listing 8: jhnMemberInterface:MemberAdd(oPC)
METHOD MemberAdd(oPC AS jhnParameterCollection) AS OBJECT
 LOCAL o AS OBJECT
 IF oPC:HasKey("defaultclass")
 BEGIN SCOPE

 LOCAL oAss AS Assembly
 LOCAL ctor AS ConstructorInfo

 LOCAL typ AS Type
 oAss := Assembly.GetAssembly(SELF:GetType())
 typ := oAss:GetType(oPC:GetParameter("defaultclass"))
 ctor := typ:GetConstructor(<Type>{oPC:GetType()})
 o := ctor:Invoke(<OBJECT>{oPC})
 END SCOPE
 ELSE
 oPC:DisplayMembers("Default class missing - " + ;

SELF:GetType():ToString() + “:MemberAdd(<oPC>)”)
 ENDIF
RETURN o

5.2 jhnMemberInterface:MemberAdd(<params>, <delegate>)

Our MemberAdd method with an additional parameter is a non-event. All it does is accept an

object and pass it into the delegate property memadd (Listing 9).

 8

Listing 9: jhnMemberInterface:MemberAdd(oPC, memadd)
METHOD MemberAdd(oPC AS jhnParameterCollection, mem add AS MemAdd) AS VOID
 LOCAL o AS OBJECT
 o := SELF:MemberAdd(oPC)
 memadd(o)
RETURN

It appears we have mission accomplished. From our ApplicationDriver it seems we have an

application going the Start of a normal Form application. Let’s look at our application.

6. The data-driven application start

The ApplicationDriver in essence only try and see if what we supplied in our start section of

the ini file is in fact an application and pass the value (iApp) to our MemberInterface. Our

MemberInterface try and create an object from the defaultclass property and if successful

return it to the ApplicationDriver. It does not really know what it will create, but trust the

calling object to know why it requested the object. The ApplicationDriver check if it is an

object of type form and would in that case behave like a normal Start function. It will execute

an Application.Run(oForm), which again will handle it until the form is closed, or somewhere

in the chain of member objects or events of oForm, an Application.Exit() is performed. Since

we the all knowing of the known and unknown (no pun intended), we unknowingly know that

the ApplicationDriver will receive a jhnApplication object an therefore exit the application.

The MemberInterface object will create an object of jhnApplication. Lets look at the

application object (Listing 10).

Our application class have some funny properties: nID, Name and Text. If we remember

from our article 5 application that should [b]ring a Chr(7) in our minds. It resembles the

AppForm class in that application, with the addition of an ID field. Not surprising but the

constructor calls an InitializeApp method passing the ParameterCollection. It seems except

for our MemberInterface class, the SetupDict class also do some important work as it is

visible inside this class too. A new method that we did not see before seems to be part of this

nifty class, ClassMemberGet. Well seems we might have plenty of members, since the

InitializeApp executes a loop for each member. Not only looping through the members, but

our MemberInterface seems to be quite an overworked object, luckily sharing the workload

with SetupDict.

But hang on, we have not displayed our Application yet and here we wander off to tell

MemberInterface again that we have some members. It is getting confusing, we have not

 9

even presented our application and it seem the application is distracted. “Hey! I want a form

object that I can run, anytime soon you will give it to me?”

Listing 10: The data-driven application class
#using jhnFT.Utils.Config
#using System.Windows.Forms

SEALED CLASS jhnApplication
 PROTECT nID AS INT
 PROTECT Name AS STRING
 PROTECT Text AS STRING

 CONSTRUCTOR(oPC AS jhnParameterCollection)
 SUPER()
 SELF:InitializeApp(oPC)
 RETURN

 HIDDEN METHOD InitializeApp(oPC AS jhnParameterCol lection) AS VOID
 SELF:nID := oPC:GetInt("class_no")
 SELF:Name := oPC:GetParameter("class_id")
 SELF:Text := oPC:GetParameter("text")
 BEGIN SCOPE
 LOCAL aMbr AS jhnParameterCollection[]
 aMbr := jhnSetupDict.Inst:ClassMemberGet(SELF:nI D)
 FOR LOCAL mbr := 0 AS INT UPTO aMbr:Length - 1
 LOCAL o AS OBJECT
 TRY
 Application.Run((Form)(o := jhnMemberInterface .Inst:MemberAdd(aMbr[mbr])))
 CATCH ex AS Exception
 aMbr[mbr]:DisplayMembers(SELF:GetType():ToStri ng() + ":InitializeApp(<oPC>)")
 MessageBox.Show(ex:Message, SELF:GetType():ToS tring())
 END TRY
 NEXT
 END SCOPE
 RETURN

END CLASS

Enough said, we know that application will create an object of type AppForm. Let’s look at

our application form and stop worrying when it will be returned by or MemberInterface.

7. The data-driven application form

Finally we getting to our application form after about 250 lines of code. That was damn hard

work and hope it will be a lot less effort from here onwards. Comparing the code from our

application class (Listing 10) to that in Listing 11, it looks very similar, except that a new

method was created (ControlsAdd) that by some chance also ask for some members and pass

it onto our MemberInterface. Only difference is that it tells MemberInterface to use

ControlAdd to associate the members with AppForm.

We can clearly see that our data-driven application framework is building up a pattern. We

consistently seems to be starting to use the same concept over and over again. Yes the speed

of execution is getting substantially slower, however, if we compare it to requesting a

webpage it seems to be still a lot faster. I am sure our users will not even detect the speed

penalty.

 10

Listing 11: The data-driven application form
#using System.Windows.Forms
#using jhnFT.Utils.Config

CLASS jhnAppForm INHERIT Form
 PROTECT nID AS INT

 CONSTRUCTOR(oPC AS jhnParameterCollection)
 SUPER()
 SELF:InitializeForm(oPC)
 RETURN

 METHOD InitializeForm(oPC AS jhnParameterCollectio n) AS VOID
 SELF:nID := oPC:GetInt("member_no")
 SELF:Name := oPC:GetParameter("member_id")
 SELF:Text := oPC:GetParameter("text")
 SELF:SuspendLayout()
 SELF:ControlsAdd()
 SELF:ResumeLayout()
 RETURN

 METHOD ControlsAdd() AS VOID
 LOCAL aMbr AS jhnParameterCollection[]
 aMbr := jhnSetupDict.Inst:ClassMemberGet(SELF:nID)
 BEGIN SCOPE

 LOCAL delCtrlAdd AS MemAdd
 delCtrlAdd := MemAdd{SELF, @ControlAdd()}
 FOR LOCAL mbr := 0 AS INT UPTO aMbr:Length - 1
 jhnMemberInterface.Inst:MemberAdd(aMbr[mbr], de lCtrlAdd)
 NEXT
 END SCOPE
 RETURN

 METHOD ControlAdd(o AS OBJECT) AS VOID
 SELF:Controls:Add((Control)o)
 RETURN

END CLASS

It is time to test our statement that we busy building a pattern of how we create and interface

to presentation objects of new classes in the known and unknown. Our ini file tells us that

AppForm contains a Menu that has members of MenuItem.

8. The data-driven menu

We can see if we can use our AppForm class and with the assistance of our favourite

developer tool (NotePad) use a bit of copy, paste and replace to get a menu. Miraculously

with a little bit of finetuning, we end up with a menuclass (Listing 12) and a menu item class

(Listing 13). It is just another presentation layer and we have discovered in our previous

articles that on an abstract layer all presentation layer classes have similar fundamentals. The

changes made to the MenuClass (jhnMenu) and MenuItemClass (jhnMenuItem) are

highlighted in blue. I think we can give self another pat on the shoulder, we have just created

a menu platform for (almost) no additional work in the known and unknown future☺ So

much for movies about back to the future. We have grabbed the future and made it happen

today!

All we need to do now is explain what we have done to end up with this marvellous piece of

art.

 11

Listing 12: The data-driven menu class
#using System.Windows.Forms
#using jhnFT.Utils.Config

CLASS jhnMenu INHERIT MenuStrip
 HIDDEN nID AS INT

 CONSTRUCTOR(p AS jhnParameterCollection)
 SUPER()
 SELF:nID := p:GetInt("member_no")
 SELF:Name := p:GetParameter("member_id")
 SELF:Text := p:GetParameter("text")
 SELF:Initialize Menu()
 RETURN

 METHOD Initialize Menu() AS VOID
 LOCAL delMIAdd AS MemAdd
 LOCAL aMbr AS jhnParameterCollection[]
 delMIAdd := MemAdd{SELF, @ MenuItemAdd ()}
 aMbr := jhnSetupDict.Inst:ClassMemberGet(SELF:nID)
 FOR LOCAL mbr := 0 AS INT UPTO aMbr:Length - 1
 jhnMemberInterface.Inst:MemberAdd(aMbr[mbr], del MIAdd)
 NEXT
 RETURN

 METHOD MenuItemAdd (o AS OBJECT) AS VOID
 IF o:GetType():IsSubclassOf(typeof(ToolStripItem))
 SELF:Items:Add((ToolStripItem)o)
 ENDIF
 RETURN

END CLASS

Listing 13: The data-driven menu item class
#using System.Windows.Forms
#using jhnFT.Utils.Config

CLASS jhn MenuItem INHERIT ToolStripMenuItem
 HIDDEN nID AS INT

 CONSTRUCTOR(p AS jhnParameterCollection)
 SUPER()
 SELF:nID := p:GetInt("member_no")
 SELF:Name := p:GetParameter("member_id")
 SELF:Text := p:GetParameter("text")
 SELF:Initialize MenuItem ()
 RETURN

 METHOD InitializeMenuItem() AS VOID
 LOCAL delMIAdd AS MemAdd
 LOCAL aMbr AS jhnParameterCollection[]
 delMIAdd := MemAdd{SELF, @ MenuItemProcess ()}
 aMbr := jhnSetupDict.Inst:ClassMemberGet(SELF:nID)
 FOR LOCAL mbr := 0 AS INT UPTO aMbr:Length - 1
 jhnMemberInterface.Inst:MemberAdd(aMbr[mbr], del MIAdd)
 NEXT
 RETURN

 HIDDEN METHOD MenuItemProcess (o AS OBJECT) AS VOID
 IF o:GetType():IsSubclassOf(typeof(ToolStripItem))
 SELF:MenuItemAdd((ToolStripItem)o)
 ENDIF
 RETURN

 HIDDEN METHOD MenuItemAdd(o AS ToolStripItem) AS V OID
 IF o:GetType():IsSubclassOf(typeof(ToolStripMenuIt em)) && ;
 !((ToolStripMenuItem)o):HasDropDown
 o:Click +=EventHandler{SELF, @MenuItemClick()}
 ENDIF

 SELF:DropDown:Items:Add(o)
 RETURN

 HIDDEN METHOD MenuItemClick(o AS OBJECT, e AS Even tArgs) AS VOID
 MessageBox.Show(((ToolStripMenuItem)o):Text:Repla ce("&", ""))
 RETURN

 HIDDEN METHOD MenuClose(o AS OBJECT, e AS EventArg s) AS VOID
 MessageBox.Show("Thank you for using the applicat ion”+ ;

“\nHope to see you soon again\n\n" +;
SELF:Text:Replace("&", ""))

 Application.Exit()
 RETURN

END CLASS

 12

WOW, that was some hard work. We in essence changed our ControlAdd on AppForm to

MenuItemAdd. It did take some thinking, since it seems there are different ways how our

MenuItems can behave. On MenuClass we add items to Items, and MenuItems that are

members of other MenuItems is added to DropDown:Items. If this MenuItem added does not

contain other members in its DropDown, we associate a MenuClickEvent to it.

Lets see if our copy, paste, replace and delete theory is holding up to a data-driven

SeparatorClass (Listing 14).

Listing 14: The data-driven toolstrip separator class
#using System.Windows.Forms

CLASS jhnToolStripSeparator INHERIT ToolStripSepara tor
 HIDDEN nID AS INT

 CONSTRUCTOR(p AS jhnParameterCollection)
 SUPER()
 SELF:nID := p:GetInt("classmember_no")
 SELF:Name := p:GetParameter("class_id")
 RETURN

END CLASS

And with a legal hat on, I will end this with “Your honour, with that I conclude my case that

the functional decomposition methodology is drowning the software development industry in

their own information pollution”.

There are two classes that we did not address yet, but we made reference to them on

numerous occasions: ParameterCollection and SetupDict.

9. The data-driven parameter collection class

The jhnParameterCollection class is a wrapper around

System.Collections.Specialized.NameValueCollection. We probably could have used a

simple SortedList<STRING, STRING>, however for future use the NameValueCollection

was chosen. It works on a very similar principle as SortedList, however when it finds a

duplicate key it appends the value to the Value as a comma separated string and does not

throw an exception, hence the ValueCollection part of the classname. The class was

enhanced a bit to extend the Get() method to include GetInt(), GetWord(), GetDWord(),

GetLong(), GetReal4(), GetReal8(), GetDecimal() and GetBoolean().

It was also enhanced to be passed an EAV string and parse it into KeyValue pairs that are

added to the Collection. For debugging purposes a DisplayMember() method was added to

show all the Key and ValueCollections associated with it. And a HasKey() to see if a certain

key already exists. The Set() method was also encapsulated by a Put() method with the same

 13

parameters to allow the “old” value to be returned. I excluded all the Get<Type>() methods

in the article to save on paper (Listing 15).

Listing 15: The data-driven parameter collection class
#using System
#using System.Windows.Forms

CLASS jhnParameterCollection INHERIT System.Collect ions.Specialized.NameValueCollection

 CONSTRUCTOR()
 SUPER()
 RETURN

 METHOD AddFromEAVString(cStr AS STRING) AS VOID
 LOCAL sSplit, sSub AS STRING[]
 LOCAL nCnt AS INT
 sSplit := cStr:Split(";":ToCharArray(), StringSpl itOptions.RemoveEmptyEntries)
 FOR nCnt := 0 UPTO sSplit:Length - 1
 IF sSplit[nCnt]:Contains("=")
 sSub := sSplit[nCnt]:Split("=":ToCharArray())
 TRY
 SELF:Add(sSub[0]:ToLower(), ;

sSub[1]:Replace("eq", "="):Replace(“sc, “;”))
 CATCH oEx AS Exception
 MessageBox.Show(cStr + "(" + nCnt:ToString() + ")" + e"\n" + oEx:Message, ;

SELF:GetType():ToString() + “:AddFromEAVString(<str ing>)”)
 SELF:DisplayMembers(SELF:GetType():ToString() + “:AddFromEAVString(<string>)”)
 END TRY
 ENDIF
 NEXT
 RETURN

 METHOD GetInt(strName AS STRING) AS INT
 LOCAL nRet AS INT
 nRet := Int16.Parse(SELF:Get(strName))
 RETURN nRet

 METHOD GetBoolean(strName AS STRING) AS LOGIC
 LOCAL lBoolean AS LOGIC
 LOCAL strRet := SELF:Get(strName):Replace(" ", "") AS STRING
 IF strRet:Length > 0
 lBoolean := "_t_true_y_yes_1_":Contains("_" + s trRet + "_")
 ENDIF
 RETURN lBoolean

 METHOD HasKey(cKey AS STRING) AS LOGIC
 RETURN Array.IndexOf(SELF:AllKeys, cKey) >= 0

 METHOD Put(strName AS STRING, strVal AS STRING) AS STRING
 LOCAL sOld AS STRING
 strName := strName:ToLower()
 sOld := SELF:Get(strName)
 IF sOld = NULL
 sOld := ""
 ENDIF
 SELF:Set(strName, strVal)
 RETURN sOld

 METHOD DisplayMembers() AS VOID
 SELF:DisplayMembers(ProcName(1) + "(" + ProcLine(1):ToString() + ")")
 RETURN

 METHOD DisplayMembers(cTxt AS STRING) AS VOID
 LOCAL cStr AS STRING
 LOCAL nItem AS INT
 cStr := ""
 FOR nItem := 0 TO SELF:Count - 1
 cStr += SELF:GetKey(nItem) + ":" + SELF:Get(nIte m) + e"\n"
 NEXT
 MessageBox.Show(cStr, cTxt)
 RETURN

END CLASS

 14

10. The data-driven setup dictionary class

I am not going into all the details of this class since it will change a bit later on in the series. I

will basically highlight the important parts from a data-driven perspective. The SetupDict is

in principle a class that is used as a “global” store property collection, call it gloabal

application vars container of what we need to run our application(s). Firstly, it setup some

properties, e.g. ExeName, StartupPath, etc and have a method for accessing them

PropertyGet().

It also reads our ini file and store it in structures to enable fast retrieval of information e.g

LkpItemGet(), ClassPropertyGet() and ClassMemberGet(). It will contain some delegates

that we can use later on in our application, too much information at the moment.

I conclude: “Data-driven applications are a fun way in which to develop software”. I hope

you enjoyed the reading and that it gave you some ideas that can be implemented in your own

environment.

11. Summary

We have created a framework of classes that can be reused over and over again in a consistent

way. It was based on the known, with some anticipation of what are still in the unknown.

Happy reading till the next article!

