
Data-driven Programming

By

Johan Nel

A series of articles explaining the principles

Article 8: Multiple applications

December 2014

 i

Table of contents

1. INTRODUCTION ..1

2. SCENARIO ...1

3. THE BETA DEMONSTRATION...2

3.1 MODIFICATIONS TO DDFRAMEWORK.EXE.INI..2

3.2 DEMONSTRATION OF THE APPLICATION: FUTUREVNAPP...2

3.3 THE INTERN WANTS TO SPEAK ...3

4. REDUNDANCY IN OUR APPLICATION ...3

4.1 ADDING CLASS MEMBERS ...3

4.2 THE START IS OBSOLETE...4

4.3 THE APPLICATION CLASS NEED SOME CHANGES...5

4.4 THE MENU ITEM CLASS CHANGES ..6

5. A HAPPY ENDING ...9

6. SUMMARY...9

 ii

Listings

LISTING 1: DDFRAMEWORK.EXE.INI CHANGES FOR FUTUREVNAPP... 2

LISTING 2: REPEATITIVE CODE IN INITIALIZE METHODS .. 3

LISTING 3: REDUNDANCY REMOVED FROM INITIALIZE METHODS ... 4

LISTING 4: ADDITIONAL OVERLOADED MEMBERADD() METHODS OF THE JHNMEMBERINTERFACE CLASS.................. 4

LISTING 5: APPLICATION DRIVER CLASS MODIFICATION.. 5

LISTING 6: THE INTERN’S ADDITIONS TO THE INI FILE... 5

LISTING 7: THE DATA-DRIVEN APPLICATION CLASS CHANGES... 6

LISTING 8: THE DATA-DRIVEN MENU ITEM ABSTRACT CLASS.. 7

LISTING 9: THE DATA-DRIVEN MENU ITEM CLASS... 8

Figures

FIGURE 1: FUTUREVNAPP APPLICATION FORM.. 3

FIGURE 2: THE DATA-DRIVEN APPLICATION FRAMEWORK.. 8

FIGURE 3: THE HELLO WORLD APPLICATION .. 9

FIGURE 4: THE FUTURE APPLICATION... 9

 1

1. Introduction

In article 7 we have extended our data-driven application to make use of two core driver

classes namely jhnMemberInterface and jhnSetupDict that in combination get and serve the

other classes in our Hello World application. In this article we will look at multiple

applications inside the data-driven framework. Unfortunately I am getting a bit side-tracked

and our RDBMS will have to wait till hopefully only the next article in the series.

2. Scenario

Our clients are quite happy with how we leveraged our application into the .net world. One

of our software users however came up with a very futuristic idea. They want a tool that can

assist them to guide companies into the future. A JAD session was held and during post-

review by the IT team, it was unanimously agreed that we can deliver the solution without

additional resources and with almost 100% guarantee that it will be within project budget and

on time. The development team tasked with the problem came back and had the following

specification:

• They need to create a new class called FutureVNApp;

• They need to create an AppForm class called FutureAppForm;

• They need to create a new MainMenu class called FutureAppMainMenu;

• The FutureAppMainMenu will contain a SubMenu class called FutureSubMenu;

• The FutureSubMenu will contain MenuItems for each of the tasks at hand and
display the necessary guidance in a MessageBox.Show when clicked;

• The Start section of the jhnIniFile will point to this new application class and
execute the FutureVNApp.

With everybody in agreement, the team sets off to do the development with targeted delivery

of the beta version in 30 working days.

At the last meeting, a new intern just started his practical with the company and was asked to

attend the meeting to gather experience in software development methodology. Needless to

say, full of theoretical knowledge, developers soon find him becoming a nuisance, since he is

constantly asking question that most of them have already forgotten about, and a feeling

inside the IT team starts growing that this new kid on the block have so much to learn, but is a

pain in the butt. We get paid to rollout code and not to answer some silly questions about

 2

why we doing things the way we do. He will soon discover that you doing things the way you

are because that is the way it works in reality.

Observing the developers working on the task at hand, one day he said he feel they

approaching the development incorrectly. Well, the coordinator, knowing the intern will only

be a couple of days still with the company, suggest why don’t he go and create some proof of

concept of how he think it should be done. The intern agreed and for the next week

everybody is quite happy with the newfound freedom of not having to answer some silly

questions. All agree that it was quite a cunning move by the coordinator to get the kid off

their cases.

3. The beta demonstration

Two days before the deadline the development team is ready with there demonstration. A

presentation to IT management is arranged and the following demonstrated:

3.1 Modifications to ddFrameWork.exe.ini

The following additions and changes ([start] class=6) were made to the ini file:

Listing 1: ddFrameWork.exe.ini changes for FutureVNApp
[start]
class=6

[class]
…
6=classtype_no:1;class_id:FutureVNApp;text:Hello fu ture
7=classtype_no:2;class_id:FutureVNForm;text:Hello f uture application form
8=classtype_no:3;class_id:FutureMainMenu;descript:F utureApp main menu
9=classtype_no:3;class_id:FutureSubMenu;text:Future App sub menu

[classmember]
…
7=class_no:6;membertype_no:2;member_no:7;seq:0
8=class_no:7;membertype_no:3;member_no:8;seq:0
9=class_no:8;membertype_no:4;member_no:9;seq:0;text :&Future
10=class_no:9;membertype_no:4;member_no:5;seq:0;tex t:Hello &Vulcan.NET
…

3.2 Demonstration of the application: FutureVNApp

Demonstration of the system also went according to plan and all are happy with the result

(Figure 1).

 3

Figure 1: FutureVNApp application form

3.3 The intern wants to speak

As the meeting was getting to a close and the chairman ask if somebody still wants to add

something, our intern that was lately very occupied and refrained from making a nuisance of

himself, asked if he can say a few words, since it is the last time before he goes back to

college with the whole IT team together. Everybody agrees and he gave his farewell

speach…

4. Redundancy in our application

The intern thanks the team for their support during the time spend at the company and wish

them well for the future and hope that he can continue building his knowledge at the company

during holidays. During the last couple of weeks, he found some ways that he feels the

company could benefit from. Out comes the laptop and presentation with all getting prepared

for a “this is going to be a long and boring (yawn)” day.

4.1 Adding class members

Firstly the intern presented findings regarding our Application, AppForm, Menu and

MenuItem classes. There are a lot of repetive code in each of the initialization methods to

add members to a class (Listing 2):

Listing 2: Repeatitive code in Initialize methods
METHOD InitializeForm(oPC AS jhnParameterCollection) AS VOID
 SELF:nID := oPC:GetInt("member_no")
 SELF:Name := oPC:GetParameter("member_id")
 SELF:Text := oPC:GetParameter("text")
 SELF:SuspendLayout()
 SELF:ControlsAdd()
 SELF:ResumeLayout()
RETURN

METHOD ControlsAdd() AS VOID
 LOCAL aMbr AS jhnParameterCollection[]
 aMbr := jhnSetupDict.Inst:ClassMemberGet(SELF:nID)

 4

 BEGIN SCOPE
 LOCAL delCtrlAdd AS MemAdd

 delCtrlAdd := MemAdd{SELF, @ControlAdd()}
 FOR LOCAL mbr := 0 AS INT UPTO aMbr:Length - 1
 jhnMemberInterface.Inst:MemberAdd(aMbr[mbr], del CtrlAdd)
 NEXT
 END SCOPE
RETURN

METHOD ControlAdd(o AS OBJECT) AS VOID
 SELF:Controls:Add((Control)o)
RETURN

He therefore changed it to rather include it in the jhnMemberInterface class and modified the

<Member[s]>Add() methods as follow (Listing 3):

Listing 3: Redundancy removed from Initialize methods
METHOD InitializeForm(oPC AS jhnParameterCollection) AS VOID
 LOCAL delCtrlAdd AS MemAdd
 SELF:nID := oPC:GetInt("member_no")
 SELF:Name := oPC:Get("member_id")
 SELF:Text := oPC:Get("text")
 delCtrlAdd := MemAdd{SELF, @ControlAdd()}
 SELF:SuspendLayout()
 jhnMemberInterface.Inst:MemberAdd(SELF:nID, delCtr lAdd)
 SELF:ResumeLayout()
RETURN

METHOD ControlAdd(o AS OBJECT) AS VOID
 SELF:Controls:Add((Control)o)
RETURN

Two new overloaded MemberAdd() methods were created in the MemberInterface class,

accepting the Owner class number [and delegate MemAdd] (Listing 4):

Listing 4: Additional overloaded MemberAdd() methods of the jhnMemberInterface class
METHOD MemberAdd(iCls AS INT) AS OBJECT[]
 LOCAL aMbr AS jhnParameterCollection[]
 LOCAL o AS System.Collections.Generic.List<OBJECT>
 o := System.Collections.Generic.List<OBJECT>{}
 aMbr := jhnSetupDict.Inst:ClassMemberGet(iCls)
 FOR LOCAL mbr := 0 AS INT UPTO aMbr:Length - 1

 o:Add(SELF:MemberAdd(aMbr[mbr]))
 NEXT
RETURN o:ToArray()

METHOD MemberAdd(iCls AS INT, memadd AS MemAdd) AS VOID
 LOCAL aO AS OBJECT[]
 LOCAL cnt AS INT
 aO := SELF:MemberAdd(iCls)
 cnt := aO:Length - 1
 FOR LOCAL i := 0 AS INT UPTO cnt
 memadd(aO[i])
 NEXT
RETURN

Suddenly it went very quiet in the boardroom and everybody sat on the edge of his or her

seat…

4.2 The start is obsolete

Secondly the intern states that the [start] section is obsolete in the ini file. He presented his

alternative to the ApplicationDriver class, indicating that the start or application can be found

by interrogating the LkpItemGet(<classtype=”application”>) method of the SetupDict class.

 5

In the event that more than 1 application is found, he addressed by a new class type “applist”

(Listing 5).

Listing 5: Application driver class modification
INTERNAL METHOD Exec() AS VOID
 STATIC LOCAL iCount := 0 AS INT
 IF iCount++ = 0
 BEGIN SCOPE
 LOCAL appidx AS INT[]
 LOCAL ddSD AS jhnSetupDict
 appidx := (ddSD := jhnSetupDict.Inst):LkpItemGet ("application")
 IF appidx:Length = 1
 jhnMemberInterface.Inst:MemberAdd(ddSD:ClassPro pertyGet(appidx[0]))
 ELSEIF appidx:Length > 1
 jhnMemberInterface.Inst:MemberAdd(;

ddSD:ClassPropertyGet(ddSD:LkpItemGet("applist")[0]))
 ELSE
 MessageBox.Show("No application defined!", ;

SELF:GetType():ToString() + ":Exec()", ;
 MessageBoxButtons.OK, MessageBoxIcon.Stop)
 ENDIF
 END SCOPE
 ELSE
 MessageBox.Show(;

"Only one instance of the application driver is all owed per active session!", ;
 SELF:GetType():ToString(), ;
 MessageBoxButtons.OK, MessageBoxIcon.Stop)
 ENDIF
RETURN

The following additions were made to the ini file (Listing 6):

Listing 6: The intern’s additions to the ini file
[lkpitem]
…
12=lkpdef_no:1;lkpitem_id:applist;defaultclass:jhnA pplication

[class]
13=classtype_no:12;class_id:AppList;text:Data-drive n applications
14=classtype_no:2;class_id:AppListForm;text:Applica tion list form
15=classtype_no:3;class_id:AppListMenu;text:Menu of Applications
16=classtype_no:3;class_id:AppListSubMenu;descript: Sub menu of applications
…

[classmember]
14=class_no:13;membertype_no:2;member_no:14;seq:0
15=class_no:14;membertype_no:3;member_no:15;seq:0
16=class_no:15;membertype_no:4;member_no:16;seq:0;t ext:&Application
…

The overloaded Exec(<class_no>) is also obsolete and no longer needed. By now everybody

is looking at the intern with different eyes…

4.3 The application class need some changes

Thirdly, the intern presented changes he made to the Application class (Listing 7). He states

that this might all be confusing, however it will be explained when he present the changes

made to the MenuItem class.

In principle, based on the application list, if more than 1 application is found, a new AppForm

will be displayed with menu items for each application. The new AppForm will become the

main application form and any application activated will basically be a [data]form of the

 6

AppForm.

By this time there are different thoughts going through the minds of those in the boardroom.

Listing 7: The data-driven application class changes
HIDDEN METHOD InitializeApp(oPC AS jhnParameterColl ection) AS VOID
 STATIC iApp := 0 AS INT
 SELF:nID := oPC:GetInt("class_no")
 SELF:Name := oPC:Get("class_id")
 SELF:Text := oPC:Get("text")
 BEGIN SCOPE
 LOCAL aMbr AS jhnParameterCollection[]
 LOCAL aO AS OBJECT[]
 LOCAL cnt AS INT
 aO := jhnMemberInterface.Inst:MemberAdd(SELF:nID)
 IF (cnt := aO:Length - 1) < 0
 oPC:DisplayMembers("No members found")
 ENDIF
 FOR LOCAL i := 0 AS INT UPTO cnt
 IF aO[i]:GetType():IsSubclassOf(typeof(Form))
 BEGIN SCOPE
 LOCAL oForm AS Form
 oForm := (Form)aO[i]
 IF iApp++ = 0
 oForm:IsMdiContainer := TRUE
 oForm:StartPosition := FormStartPosition.Cent erScreen
 oForm:ClientSize := System.Drawing.Size{250, 200}
 Application.Run(oForm)
 ELSE
 oForm:Show()
 ENDIF
 END SCOPE
 ELSE
 MessageBox.Show(e"Unknown class member!\nExpect ing a form\n\n” + ;

Object type returned\t: " + aO[i]:GetType():ToStrin g(), ;
 SELF:GetType():ToString() + ":InitializeA pp()", ;

MessageBoxButtons.OK, MessageBoxIcon.Error)
 ENDIF
 NEXT
 END SCOPE
RETURN

Needless to say, the older developers have totally lost track of what the intern is talking about

and have started to think about early retirement…

4.4 The menu item class changes

Fourthly, the intern made some changes to the MenuItem class. He created an abstract base

MenuItem class and subclassed the MenuItem class inheriting from the base class. Two

initialize methods were created. One building a list of submenu items from applications

found in the ini file that is added to the AppListSubMenu and an initialize method for normal

menu items (Listing 8 and Listing 9). The intern then speaks about how the menuitem is

internally used, and the couple of people in the audience that have followed him till now, also

starts wandering if they are in the wrong industry and should look at a career change.

All said and done the intern then present the IT team with a live demonstration of the

modifications and to all present, it seems that what he did is actually doing the job.

The meeting is adjourned and the IT manager requests the intern to please come see him.

 7

Listing 8: The data-driven menu item abstract class
#using System.Windows.Forms
#using jhnFT.Utils.Config

INTERNAL ABSTRACT CLASS jhnMenuItemBase INHERIT Too lStripMenuItem
 PROTECT nID, nOwnerID AS INT

 CONSTRUCTOR()
 SUPER()
 RETURN

 PROPERTY Class_No AS INT
 GET
 RETURN SELF:nID
 END GET
 END PROPERTY

 PROPERTY Owner_No AS INT
 GET
 RETURN SELF:nID
 END GET
 END PROPERTY

 PROTECTED METHOD MenuItemClick(o AS OBJECT, e AS E ventArgs) AS VOID
 LOCAL oPC AS jhnParameterCollection[]
 LOCAL cnt AS INT
 oPC := jhnSetupDict.Inst:ClassMemberGet(((jhnMenu ItemBase)o):Class_No)
 cnt := oPC:Length - 1
 IF cnt >= 0
 FOR LOCAL i := 0 AS INT UPTO cnt
 LOCAL obj AS OBJECT
 obj := jhnMemberInterface.Inst:MemberAdd(oPC[i])
 IF obj:GetType():IsSubclassOf(typeof(Form))
 ((jhnMenuItemBase)o):ChangeEnabledStatus()
 BEGIN SCOPE
 LOCAL oForm AS Form
 oForm := (Form)obj
 oForm:FormClosed += ;

FormClosedEventHandler{(jhnMenuItemBase)o , ;
@MenuEventChangeEnabledStatus()}

 oForm:Show()
 END SCOPE
 ELSE
 MessageBox.Show(((ToolStripMenuItem)o):Text:Re place("&", ""))
 ENDIF
 NEXT
 ELSE
 MessageBox.Show(((ToolStripMenuItem)o):Text:Repl ace("&", ""))
 ENDIF
 RETURN

 PROTECTED ;
METHOD MenuEventChangeEnabledStatus(o AS OBJECT, e AS FormClosedEventArgs) AS VOID

 SELF:ChangeEnabledStatus()
 RETURN

 HIDDEN METHOD ChangeEnabledStatus() AS VOID
 SELF:Enabled := !SELF:Enabled
 RETURN

 PROTECTED METHOD MenuItemProcess(o AS OBJECT) AS V OID
 IF o:GetType():IsSubclassOf(typeof(ToolStripItem))
 SELF:MenuItemAdd((ToolStripItem)o)
 ELSE
 MessageBox.Show("Unable to process object\n\nObj ect type\t: " + ;

o:GetType():ToString(), ;
SELF:GetType():ToString() + ":MenuItemProcess(o)")

 ENDIF
 RETURN

 PROTECTED METHOD MenuItemAdd(o AS ToolStripItem) A S VOID
 IF o:GetType():IsSubclassOf(typeof(ToolStripMenuI tem)) && ;

!((ToolStripMenuItem)o):HasDropDown
 ((ToolStripMenuItem)o):Click += EventHandler{SEL F, @MenuItemClick()}
 ENDIF
 SELF:DropDown:Items:Add(o)
 RETURN

 PROTECTED METHOD MenuClose(o AS OBJECT, e AS Event Args) AS VOID
MessageBox.Show("Thank you for using the applicatio n\n” + ;

Hope to see you soon again\n\n" + SELF:Text:Replace ("&", ""))
Application.Exit()

 RETURN

END CLASS

 8

Listing 9: The data-driven menu item class
CLASS jhnMenuItem INHERIT jhnMenuItemBase
 CONSTRUCTOR(p AS jhnParameterCollection)
 SUPER()
 SELF:nID := p:GetInt("member_no")
 SELF:nOwnerID := p:GetInt("class_no")
 SELF:Name := p:Get("member_id")
 SELF:Text := p:Get("text")
 IF SELF:nOwnerID > 0
 IF SELF:Name:ToLower():StartsWith("applist")
 SELF:InitializeAppMenuItem()
 ELSE
 SELF:InitializeMenuItem()
 ENDIF
 ENDIF
 RETURN

 METHOD InitializeMenuItem() AS VOID
 LOCAL delMIAdd AS MemAdd
 delMIAdd := MemAdd{SELF, @MenuItemProcess()}
 TRY
 jhnMemberInterface.Inst:MemberAdd(SELF:nID, delM IAdd)
 CATCH ex AS Exception
 MessageBox.Show(ex:Message, SELF:GetType():ToStr ing())
 END TRY
 RETURN

 METHOD InitializeAppMenuItem() AS VOID
 LOCAL delMIAdd AS MemAdd
 delMIAdd := MemAdd{SELF, @MenuItemProcess()}
 TRY
 BEGIN SCOPE
 LOCAL p, oAPC AS jhnParameterCollection
 LOCAL iCls AS INT[]
 LOCAL iCnt AS INT
 iCls := jhnSetupDict.Inst:LkpItemGet("applicati on")
 iCnt := iCls:Length - 1
 FOR LOCAL i := 0 AS INT UPTO iCnt
 p := jhnSetupDict.Inst:ClassPropertyGet(iCls[i])
 oAPC := jhnParameterCollection{}
 oAPC:Add("classmember_no", (i * -1):ToString())
 oAPC:Add("class_no", "0")
 oAPC:Add("seq", i:ToString())
 oAPC:Add("member_no", p:Get("class_no"))
 oAPC:Add("member_id", p:Get("class_id"))
 oAPC:Add("membertype_no", p:Get("classtype_no"))
 oAPC:Add("membertype_id", p:Get("classtype_id"))
 oAPC:Add("text", p:Get("text"))
 oAPC:Add("defaultclass", SELF:GetType():ToStri ng())
 jhnMemberInterface.Inst:MemberAdd(oAPC, delMIA dd)
 NEXT
 END SCOPE
 CATCH ex AS Exception
 MessageBox.Show(ex:Message, SELF:GetType():ToStr ing())
 END TRY
 RETURN

END CLASS

Figure 2: The data-driven application framework

 9

Figure 3: The Hello world application

Figure 4: The Future application

5. A happy ending

The intern meets with the IT manager, and the manager informs him that his work has really

made an impression. On behalf of the company, he would like to offer him a position inside

the company after completion of his studies. If he accepts, the company will pay for all his

study expenses, on the condition that he signs a 3-year contract with the company.

6. Summary

We have created a framework for running multiple applications from inside of one

application (framework). I know it was done a bit tongue in the cheek, and some of the

concepts are quite difficult to describe in words. It will just not do justice for what went into

developing the concepts. I suggest the readers use the debugger to step through the code to

try and understand the logic.

Till our next article: Presentation of business data – Extending the AppForm. Happy reading

till the next article!

